PaReprop: Fast Parallelized **Reversible Backpropagation** Transformers for Vision Workshop @ CVPR 2023, Spotlight

Tyler Zhu*, Karttikeya Mangalam*. UC Berkeley 06/18/2023

Motivation

ImageNet-1K Acc.

A ConvNet for the 2020s. Liu et. al, CVPR 2022.

As models scale up, can we make more general, memory-efficient architectures?

https://huggingface.co/learn/nlp-course/chapter1/4

Reversible Transformations

- Key property: perfectly reconstruct inputs from outputs
- Functions F, G, need **not** be analytically invertible

$$\mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \xrightarrow[]{}_{T_1} \begin{bmatrix} I_2 + F(I_1) \\ I_1 \end{bmatrix} = \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} := \mathbf{O} \quad \mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \xrightarrow[]{}_{T_2} \begin{bmatrix} I_1 + G(I_2) \\ I_2 \end{bmatrix} = \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} := \mathbf{O}$$

Nice: Non-linear independent components estimation. Dinh et. al, ICLR Workshop 2015.

Reversible Vision Transformers (RevViT)

- Extend reversible transformations to transformers
- Set F(x) = Attention Block, G(x) = MLP Block
 - Ignore activation caching in forward pass
 - Recover them in the backward pass
- Achieves equal perf, uses less memory

model	Acc	Memory (MB/img)	Maxiumum Batch Size	GFLOPs	Param (M)
ViT-S [59]	79.9	66.5	207	4.6	22
Rev-ViT-S	79.9	8.8 ↓ 7.6 ×	1232 <u>↑6.0</u> ×	4.6	22
ViT-B [59]	81.8	129.7	95	17.6	87
Rev-ViT-B	81.8	17.0 ↓ 7.6 ×	602 <u>↑6.3</u> ×	17.6	87

Reversible Vision Transformers. Mangalam et. al, CVPR 2022.

The backprop in detail

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Forward pass of block **x**

Backward pass with gradient updates of block ${f x}$

The backprop in detail

Forward pass of block **x**

Backward pass with gradient updates of block **x**

Activation recomputation in reversible backprop of block **x**

The backprop in detail

No dependency b/w the blocks!

 Can update gradients of block 1 and recompute block 0 activations at the same time

Forward pass of block **x**

Backward pass with gradient updates of block ${f x}$

Activation recomputation in reversible backprop of block ${f x}$

PaReprop: Parallelized Reversible Backprop

Now run both in <u>parallel</u> 0 Once we have the activations, we can do both steps at once flush Speeds up backprop significantly! Forward pass of block x Χ Backward pass with gradient updates of block x Χ Activation recomputation in reversible backprop of block **x** X

Reversible MViT, Swin

Reversible MViT

Reversible Swin

PaReprop improves throughput on vision archs

Large gains for Hierarchical Vision Transformers

Good for Language Models too!

Throughput (seqs/sec) vs Batch Size for RoBERTa Sizes

Memory used for PaReprop is negligible

Mem (GiB) vs Batch Size for Swin Architectures

Conclusion

- cost of some re-computations
- In practice, PaReprop performs on par or better than Reprop, even reaching up to 20% speedups in throughput (25% theoretical max)
 - Very good with mixed architectures (like hierarchical ViTs)
- Check out our poster! Website: <u>www.tylerzhu.com/pareprop</u>

• Reversible architectures offer extremely memory-efficient training at the

PaReprop essentially negates them by parallelizing the backward pass

Project Page

