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Motivation

As models scale up, can we make more general, memory-efficient 
architectures?

https://huggingface.co/learn/nlp-course/chapter1/4A ConvNet for the 2020s. Liu et. al, CVPR 2022. 

https://huggingface.co/learn/nlp-course/chapter1/4


Reversible Transformations

• Key property: perfectly reconstruct inputs from outputs


• Functions F, G, need not be analytically invertible

Nice: Non-linear independent components estimation. Dinh et. al, ICLR Workshop 2015. 



Reversible Vision Transformers (RevViT)

• Extend reversible transformations to transformers


• Set F(x) = Attention Block, G(x) = MLP Block


• Ignore activation caching in forward pass


• Recover them in the backward pass


• Achieves equal perf, uses less memory

Reversible Vision Transformers. Mangalam et. al, CVPR 2022. 

Linear Linear  Linear  

LayerNorm

LayerNorm

Linear  

Softmax

MLP

F(x):=  
At tent ion

 Block

G(x):=  
MLP 
Block

 O1  O2 

 I2  I1

Qconv Kconv Vconv 

Linear Linear  Linear  

   Out

Linear   

Linear

Fusion Block

Kconv Vconv

Linear   Linear  Linear  

Linear  

 I1  I2

LayerNorm LayerNorm

LayerNorm LayerNorm

MLP MLP

Softmax Softmax

 O1  O2

 I2 I1

F(x):=  
Pooling
At tent ion 
Block

G(x):=  
MLP 
Block

    O2 :=  I2 +  At t (I1)
   O1 :=  I1 +  Mlp(O2) 

I1 I2

F

G

O1 O2



The backprop in detail
Backprop

stream0 0 1 2 3 3 2 1 0

Reprop
stream0 0 1 2 3 3 3 2 2 1 1 0 0

PaReprop
stream0 0 1 2 3 3 3 1 1
stream1 2 2 0 0

Forward pass of block xx

Backward pass with gradient updates of block xx

Activation recomputation in reversible backprop of block xx
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No dependency b/w the blocks!


• Can update gradients of block 1 
and recompute block 0 activations 
at the same time



PaReprop: Parallelized Reversible Backprop
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Now run both in parallel


• Once we have the activations, we 
can do both steps at once


• Speeds up backprop significantly!



Reversible MViT, Swin
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PaReprop improves throughput on vision archs



Large gains for Hierarchical Vision Transformers

+19.3%



Good for Language Models too!



Memory used for PaReprop is negligible 



Conclusion

• Reversible architectures offer extremely memory-efficient training at the 
cost of some re-computations 


• PaReprop essentially negates them by parallelizing the backward pass


• In practice, PaReprop performs on par or better than Reprop, even 
reaching up to 20% speedups in throughput (25% theoretical max)


• Very good with mixed architectures (like hierarchical ViTs)


• Check out our poster! Website: www.tylerzhu.com/pareprop

Project Page

http://www.tylerzhu.com/pareprop

