Tyler Zhu*, Karttikeya Mangalam*. UC Berkeley 06/18/2023

PaReprop: Fast Parallelized Reversible Backpropagation Transformers for Vision Workshop @ CVPR 2023, Spotlight

Motivation

ImageNet-1K Acc.

As models scale up, can we make more general, memory-efficient architectures?

A ConvNet for the 2020s. Liu et. al, CVPR 2022. <https://huggingface.co/learn/nlp-course/chapter1/4>

Reversible Transformations

- Key property: perfectly reconstruct inputs from outputs
- Functions F, G, need **not** be analytically invertible

$$
\mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \xrightarrow[T_1]{T_1} \begin{bmatrix} I_2 + F(I_1) \\ I_1 \end{bmatrix} = \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} := \mathbf{O} \quad \mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \xrightarrow[T_2]{T_1} \begin{bmatrix} I_1 + G(I_2) \\ I_2 \end{bmatrix} = \begin{bmatrix} O_1 \\ O_2 \end{bmatrix} := \mathbf{O}
$$

Nice: Non-linear independent components estimation. Dinh et. al, ICLR Workshop 2015.

Reversible Vision Transformers (RevViT)

- Extend reversible transformations to transformers
- Set $F(x)$ = Attention Block, $G(x)$ = MLP Block
	- Ignore activation caching in forward pass
	- Recover them in the backward pass
- Achieves equal perf, uses less memory

Reversible Vision Transformers. Mangalam et. al, CVPR 2022.

The backprop in detail

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

 \mathbf{x} Forward pass of block \mathbf{x}

 $\begin{array}{|c|c|}\n\hline\n\textbf{x} & \text{Backward pass with gradient updates of block \textbf{x}} \\\hline\n\end{array}$

The backprop in detail

 $\mathbf x$ Forward pass of block $\mathbf x$

x | Backward pass with gradient updates of block x

 $\begin{array}{|c|c|c|}\n\hline \textbf{x} & \text{Action recomputation in reversible backup of block \textbf{x}} \\\hline \end{array}$

The backprop in detail

Reprop

and recompute block 0 activations **• Can update gradients of block 1** at the same time

Mem (GiB)

Mem (GiB)

 \mathbf{x} Forward pass of block \mathbf{x}

x | Backward pass with gradient updates of block x

 X Activation recomputation in reversible backprop of block x

No dependency b/w the blocks!

PaReprop: Parallelized Reversible Backprop Mem (GiB)

flush stream of the control of th stream1 2 2 0 0 x Forward pass of block x **x** Backward pass with gradient updates of block **x Time elapsed** Now run both in parallel **Mem (GiB) Mem (GiB) flush** • Once we have the activations, we can do both steps at once • Speeds up backprop significantly!

 \mathbf{x} | Activation recomputation in reversible backprop of block \mathbf{x}

Reversible MViT, Swin

Reversible MViT and the Swing Reversible Swing

PaReprop improves throughput on vision archs

Throughput (ims/sec) vs Batch Size for Vision Architectures

Large gains for Hierarchical Vision Transformers

Good for Language Models too!

Throughput (seqs/sec) vs Batch Size for RoBERTa Sizes

Memory used for PaReprop is negligible

Mem (GiB) vs Batch Size for Swin Architectures

Conclusion

- cost of some re-computations
-
- In practice, PaReprop performs on par or better than Reprop, even reaching up to 20% speedups in throughput (25% theoretical max)
	- Very good with mixed architectures (like hierarchical ViTs)
- Check out our poster! Website: www.tylerzhu.com/pareprop

• Reversible architectures offer extremely memory-efficient training at the

• PaReprop essentially negates them by parallelizing the backward pass

Project Page

