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The Reversible Transformation analytically calculates the 
inputs from the outputs

Selected Previous Work

This allows intermediate activation recomputation in backward 
pass freeing the memory used for activation caching in forward.

Reversible backpropagation (Reprop) is done sequentially; not necessary!
Using PyTorch CUDA streams, we can run both together at once and in theory 

be as fast as normal backprop (~25% max theoretical speedup possible).

PaReprop does especially well with hierarchical models due 
to their non-homogenous composition of operations.
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Rev-ViT [1] sets F(x) to 
Attention Block and G(x) 
to MLP Block of ViTs

• No performance drop

• Increases training 
throughput by up to 
2.3 times! 

• Same params, FLOPs, 
yet 15.5x smaller per 
image memory 

Can also adapt hierarchical architectures like MViT (left) 
and Swin Transformer (right) w/ stage-transition blocks.

• Performance matches original; reversible transformers 
are a general, memory-efficient method for training.

II. Application: Reversible Vision Transformers

I. Background: The Reversible Transformation III. Improving the Backpropagation

IV. Better Throughput Across Vision & Language Transformers

V. Great for Hierarchical & Language Models
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VI. Negligible Memory Cost vs. Savings

PaReprop boosts throughput up to 20% (almost at 25%)
Best with low-memory or huge, mixed models

• Reprop & PaReprop are memory-efficient vs. Backprop
• Memory cost of PaReprop is small vs. the overall savings

PaReprop also improves reversible backpropagation on 
language transformers (our proposed Rev-RoBERTa).


