

Unifying Specialized Visual Encoders for Video Language Models

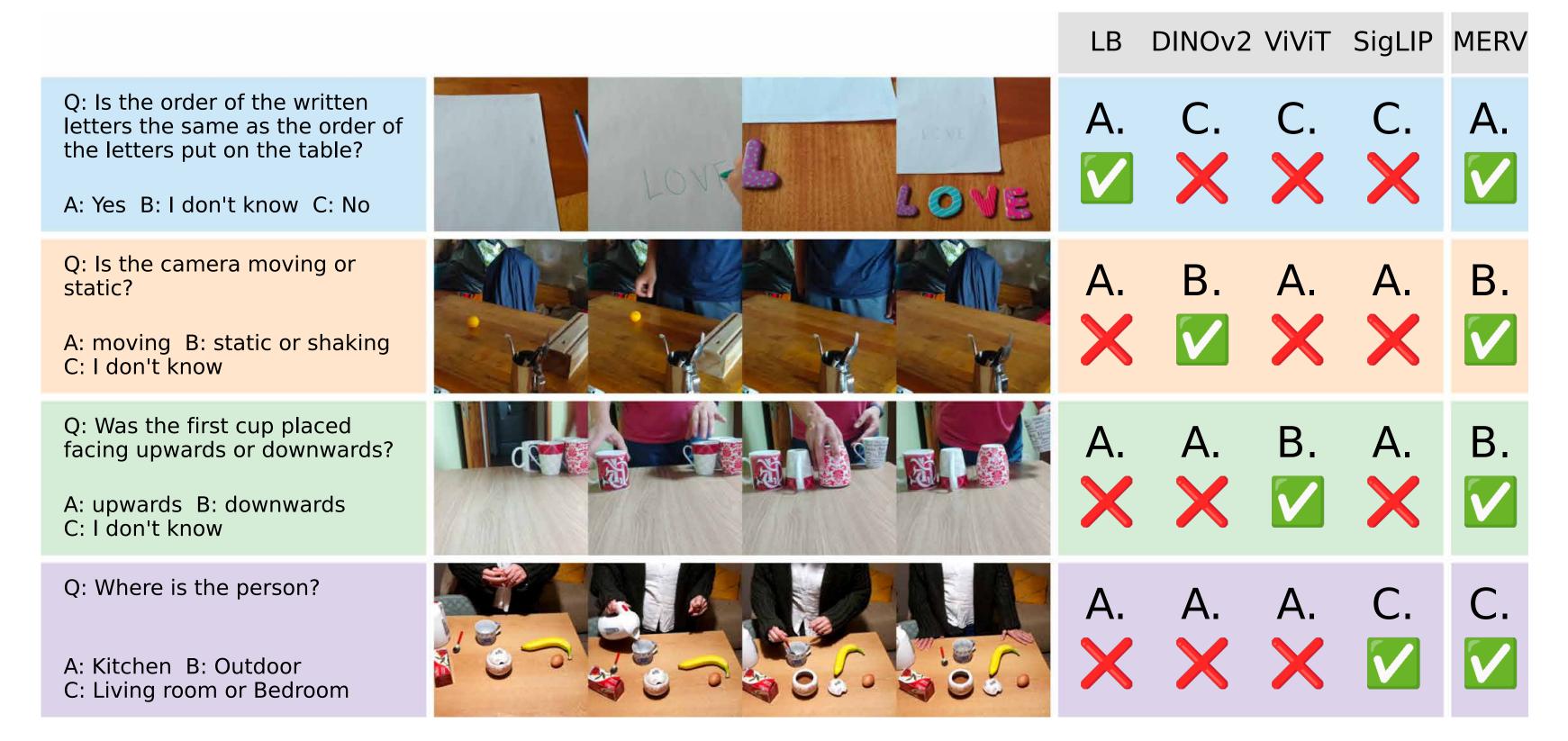
Princeton Visual AI Lab

Jihoon Chung*,1, Tyler Zhu*,1, Max Gonzalez Saez-Diez1, Juan Carlos Niebles2, Honglu Zhou2, Olga Russakovsky1

Princeton University¹ Salesforce Research²

Motivation: A General Vision Model

Prior works use a single visual encoder, which limits the type of visual information your VideoLLM can process [1].



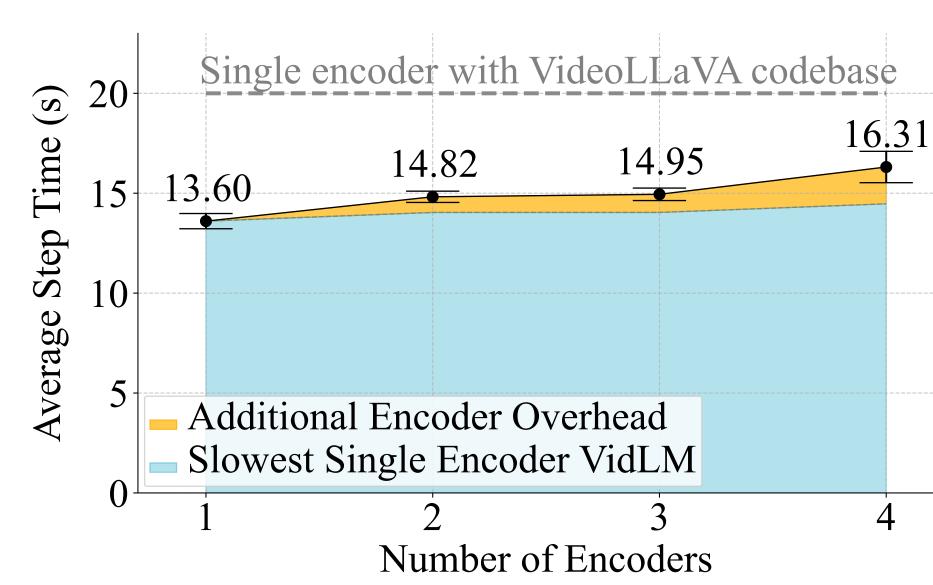
Can we create a generally capable video model by combining multiple pretrained visual models? Yes!

Video Benchmark Results

Methods	MSVD-QA		MSRVTT-QA		TGIF-QA		Perception	ActivityNet-QA	
Methous	Acc	Score	Acc	Score	Acc	Score	Acc	Acc	Score
Alternative data mixes									
Video-Chat (Li et al., 2023c)	56.3	2.8	45.0	2.5	_	-	_	26.5	2.2
LLaMA-Adapter (Zhang et al., 2024b)	54.9	3.1	43.8	2.7	_	-	_	34.2	2.7
Video-ChatGPT (Maaz et al., 2024)	64.9	3.3	49.3	2.8	_	-	_	35.2	2.7
LLaMA-VID-7B (Li et al., 2024b)	69.30	3.74	57.84	3.24	51.31	3.26	41.64	46.45	3.22
LLaMA-VID-13B (Li et al., 2024b)	70.25	3.77	58.58	3.26	51.26	3.26	41.54	46.79	3.23
Same data mixes									
Video-LLaVA (Lin et al., 2024)	67.74	3.69	56.90	3.18	47.99	3.17	44.22	47.08	3.27
MERV	70.97	3.76	59.03	3.25	51.1	3.26	46.21	50.87	3.34
Gains to Video-LLaVA	+3.23	+.07	+2.13	+.07	+3.11	+.09	+1.99	+3.79	+.07

We outperform prior works with similar data mixes, especially Video-LLaVA with same data on standard video benchmarks.

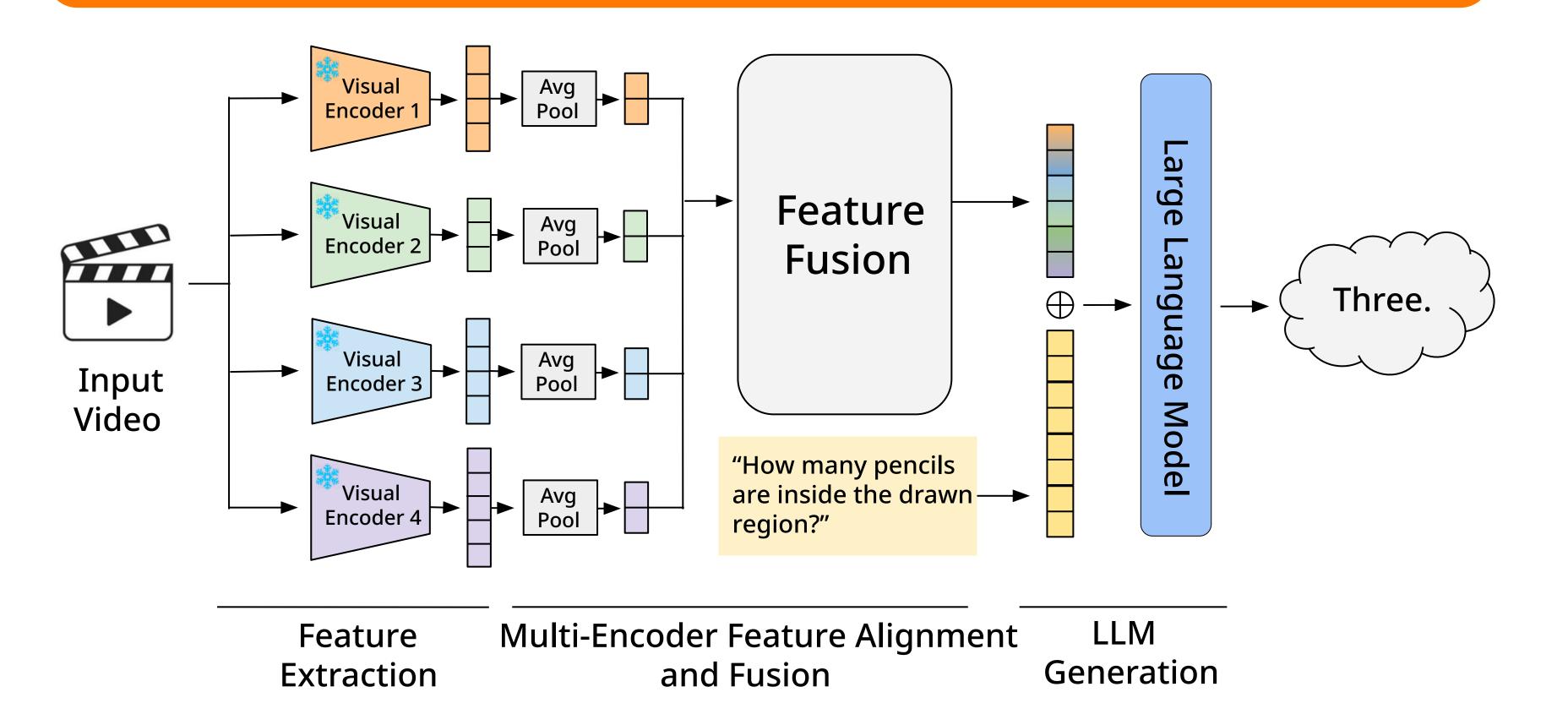
Computational Efficiency



Our method scales well using parallelism over multiple GPUs!

- VLMs are bottlenecked by vision, so | models is OK
- Overhead from multiple is minimal compared to 1 model

Architecture



We use four visual experts varying in visual format (image vs. video) and data (vision vs. vision+language)

- Match visual encoders across space, time, and dim (MLP)
- Space: 2D Avg Pool for spatial alignment was best
- Time: Sample frames for input so that output was aligned

[Feature Fusion]
$$\mathbf{O} := \operatorname{Softmax} \left(\frac{\mathbf{Q}\overline{\mathbf{X}}^{\top}}{\sqrt{d}} \right) \mathbf{X} \in \mathbb{R}^{\ell \times d}$$

Simple cross attention method using a single learnable query Q over averaged features from each embedding X

Architecture Ablations

Pre-f	usion	Projec	ctor	Pre-fu	ısion F	Projecto	Feature Fusion Strategy			
ojector	Avg Acc	Params	FLOPs	Tkns	MSVD	MSRVTT	TGIF	Strategy	Avg Acc	FLOPs
7 tok ass tok	54.76 52.05	-	-	1	61.94	54.64 55.72		Cross-Attn	56.83	17.19 T
) Avg	54.96	0	2.1M	4 16	64.47 67.23	55.72 56.44		Concat (Seq.)	54.45	43.09 T
O Avg* O Attn	55.86 52.12	0 12.7M	4.2M 9.7G	64	69.08	58.00		Concat (Ch.) Learnable W	56.64 55.01	16.29 T 16.24 T
O Conv O Avg*	54.23 55.09	237M 0	241G 4.2M	100 144	68.38 68.65	57.47 57.73	48.78 48.81	25% - Mixed	54.19	16.39 T
Conv	55.42	113M	4.2IVI 232G	256	68.46		48.66			

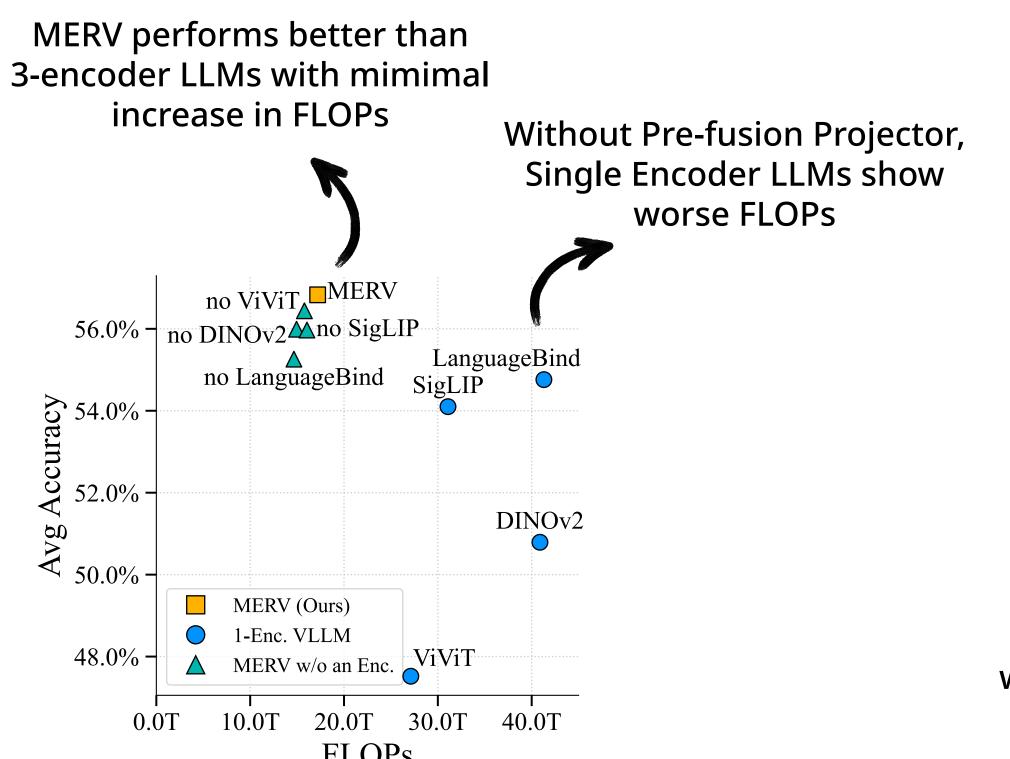
Related Works and Links

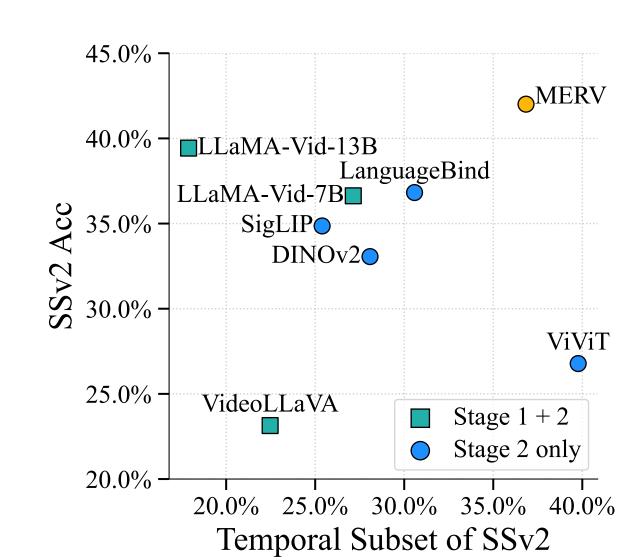
1] Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs, Shengbang Tong, et al., CVPR 2024 2] Video-LLaVA: Learning United Visual Representation by Alignment Before Projection, Bin Lin, et al., EMNLP 2024 3] LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment,

[5] ViViT: A Video Vision Transformer, Anurag Arnab, et al., ICCV 2021 [6] Sigmoid Loss for Language Image Pre-Training, Xiaohua Zhai, et al., ICCV 2023

Sponsored By National Science Foundation Grant No. 2107048

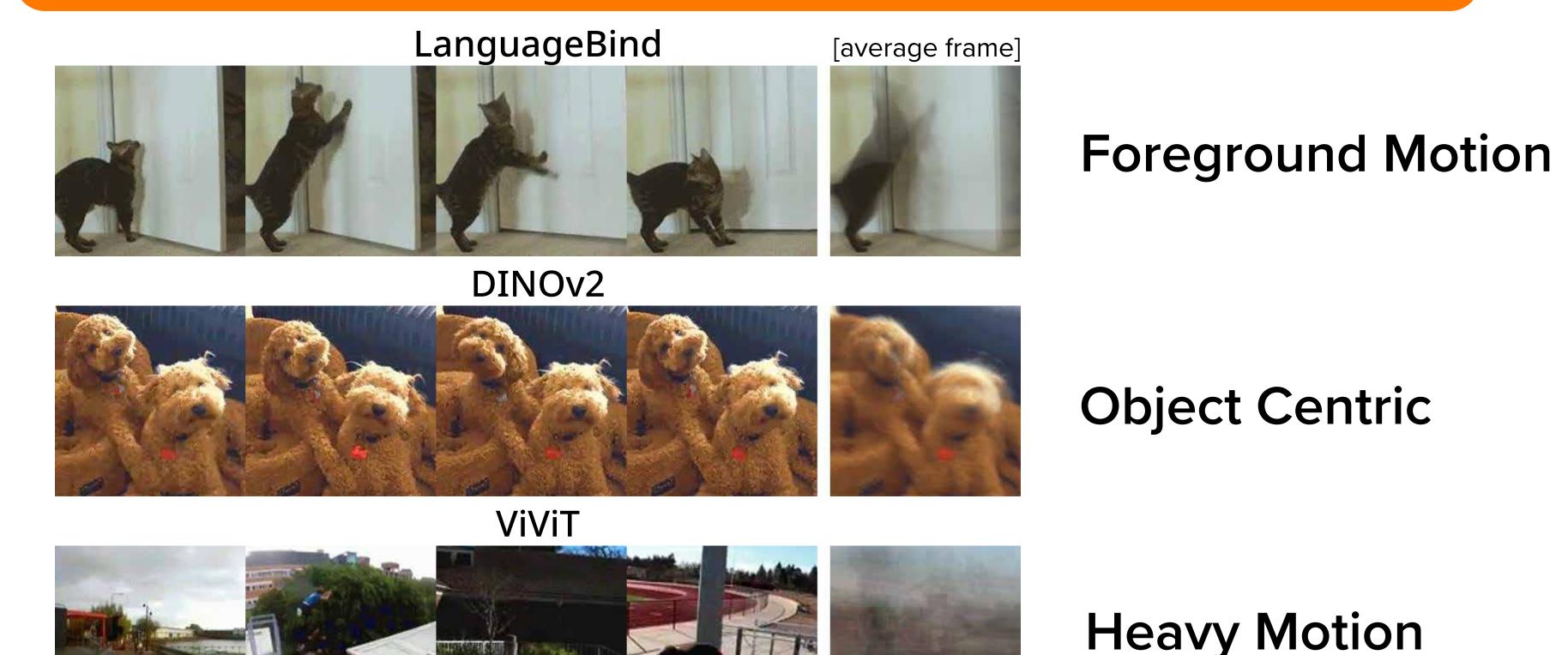
MERV is Capable, Efficient and Video-aware

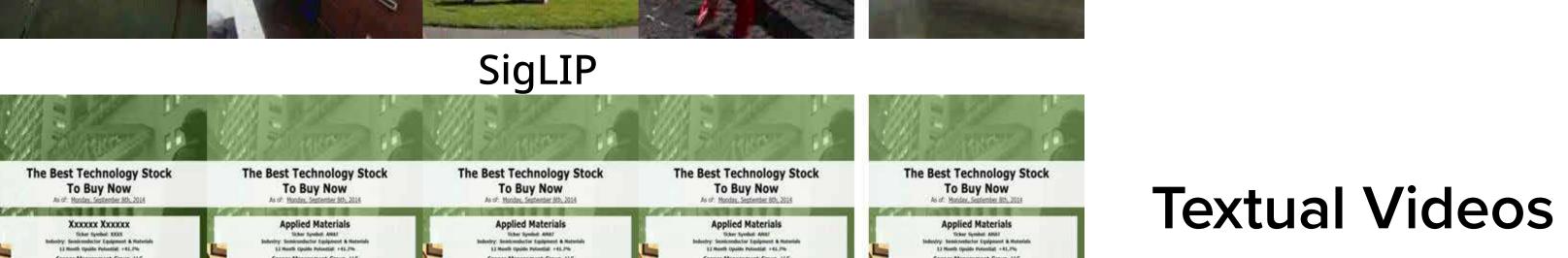




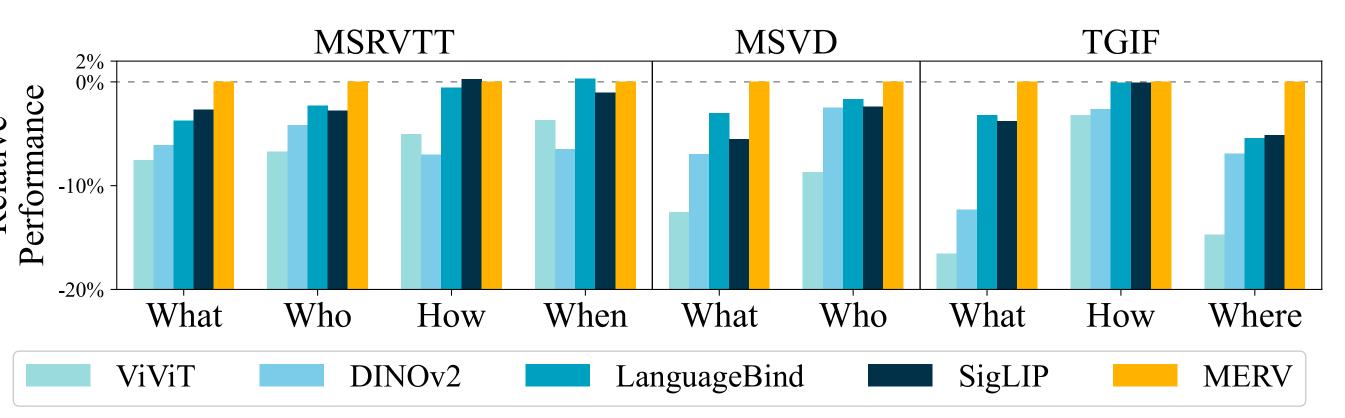
Ours outperforms existing models on entire Something-Something benchmark, with significant increase in classes that require strong temporal understanding ability

Visual Encoders Have Individual Strengths





Maximally activating videos for each encoder from X-attn weights reveal that different encoders are specialized for different types of videos



MERV outperforms single-encoder LLMs on various video tasks.