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are inside the drawn 
region?”

Prior works use a single visual encoder, which limits the 
type of visual information your VideoLLM can process [1].
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Maximally activating videos for each encoder from X-attn weights reveal 
that di�erent encoders are specialized for di�erent types of videos

MERV outperforms single-encoder LLMs on 
various video tasks. 

We use four visual experts varying in visual format (image 
vs. video) and data (vision vs. vision+language)

• Match visual encoders across space, time, and dim (MLP)
• Space: 2D Avg Pool for spatial alignment was best
• Time: Sample frames for input so that output was aligned

MERV performs better than 
3-encoder LLMs with mimimal 

increase in FLOPs Without Pre-fusion Projector, 
Single Encoder LLMs show 

worse FLOPs

Ours outperforms existing models on entire 
Something-Something benchmark, 

with significant increase in classes that require 
strong temporal understanding ability

Our method scales well using 
parallelism over multiple GPUs!
• VLMs are bottlenecked by 
vision, so || models is OK

• Overhead from multiple is 
minimal compared to 1 model 

Can we create a generally capable video model by 
combining multiple pretrained visual models? Yes!
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Simple cross attention method using a single learnable 
query Q over averaged features from each embedding X
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We outperform prior works with similar data mixes, especially 
Video-LLaVA with same data on standard video benchmarks.
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Visual Encoders Have Individual Strengths
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