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Prior works use a single visual encoder, which limits the
type of visual information your VideoLLM can process [1].

Q: Is the order of the written
letters the same as the order of
the letters put on the table?

A: Yes B: | don't know C: No

Q: Is the camera moving or
static?

A: moving B: static or shaking
C: I don't know

Q: Was the first cup placed
facing upwards or downwards?

A: upwards B: downwards
C: I don't know

Q: Where is the person?

A: Kitchen B: Outdoor
C: Living room or Bedroom
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Can we create a generally capable video model by
combining multiple pretrained visual models? Yes!

LB DINOv2 ViViT SigLIP MERV

Methods MSVD-QA | MSRVTT-QA | TGIF-QA | Perception | ActivityNet-QA
Acc Score | Acc  Score | Acc Score Acc Acc Score
Alternative data mixes
Video-Chat (Li et al., 2023c¢) 56.3 2.8 45.0 2.5 26.5 2.2
LLaMA-Adapter (Zhang et al., 2024b) | 549 3.1 | 43.8 2.1 34.2 2.7
Video-ChatGPT (Maaz et al., 2024) 64.9 3.3 49.3 2.8 - - - 35.2 2.7
LLaMA-VID-7B (Li et al., 2024b) 69.30 3.74 | 57.84 324 |51.31 3.26 41.64 46.45 3.22
LLaMA-VID-13B (Li et al., 2024b) 70.25 377 | 5858 3.26 | 51.26 3.26 41.54 46.79 3.23
Same data mixes
Video-LLaVA (Lin et al., 2024) 67.74 3.69 | 5690 3.18 |47.99 3.17 44.22 47.08 3.27
MERV 7097 3776 | 59.03 3.25 51.1 3.26 46.21 50.87 3.34
Gains to Video-LLaVA +3.23 +.07 | +2.13 +.07 | +3.11 +.09 +1.99 +3.79 +.07

We outperform prior works with similar data mixes, especially
Video-LLaVA with same data on standard video benchmarks.
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We use four visual experts varying in visual format (image
vs. video) and data (vision vs. vision+language)
- Match visual encoders across space, time, and dim (MLP)
« Space: 2D Avg Pool for spatial alignment was best
- Time: Sample frames for input so that output was aligned
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Simple cross attention method using a single learnable
query Q over averaged features from each embedding X
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[Feature Fusion] O := Softmax

Pre-fusion Projector Pre-fusion Projector Tokens
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MERV performs better than
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Textual Videos
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Maximally activating videos for each encoder from X-attn weights reveal

Our method scales well using

12)?;] ij{or A;i 7A6CC Params TLOPS "fkns M6SIV9I4)1 MSI;Z]; IIGAILI; Strategy Avg Acc | FLOPs
class tok | 52.05 _ _ 4 64.47 5577 4530 Cross-Attn 56.83 | 17.19T
2D Avg 54.96 0 2.1M 16 6723 5644 4775 Concat (Seq.) 5445 |43.09T
2D Avg* | 55.86 0 4.2M 64 69.08 58.00 50.01 Concat (Ch.) 56.64 | 16.29 T
2D Atun | 52.12 1 12M - 9.7G 100 | 6838 5747 4878 Learnable W 55.01 | 1624 T
3D Avg* | 55.09 0  49M 144 68.65 57.73 48.81

3D Conv | 5542 | 113M 232G 256 | 68.46 57.72  48.66

that different encoders are specialized for different types of videos
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parallelism over multiple GPUS!

« VLMs are bottlenecked by
vision, so || models is OK

« Overhead from multiple is
minimal compared to 1 model
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MERYV outperforms single-encoder LLMs on
various video tasks.



