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1 Terminology

A graph G consists of vertices or nodes, the points, and edges, the lines. We frequently
write V (G) and E(G) for the vertex and edge sets of G respectively, and call |V (G)| and |E(G)|
the order and size of the graph respectively.
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Figure 1: A graph of order 5 and size 6.

In Figure 1, V (G) = {u, v, w, x, y} and E(G) = {uv, ux, uw, vx,wx, xy}. If e = uv is an edge
of G, then u and v are said to be joined by the edge e. In this case, u and v are referred to as
neighbors of each other.

For a connected graph G, any open trail that contains every edge of G is an Eulerian trail.
If G contains a closed Eulerian trail, it is Eulerian

Theorem 1. A nontrivial connected graph G is Eulerian if and only if every vertex of G has
even degree.

With this, we can easily characterize graphs possessing an Eulerian trail.

Corollary 2. A connected graph G contains an Eulerian trail if and only if exactly two vertices
of G have odd degree. Furthermore, each Eulerian trail of G begins at one of these odd vertices
and ends at another.

There is an analog to Eulerian trails. A path in a graph G that contains every vertex of G is
called a Hamiltonian path.1 Unfortunately, these are much less well-behaved.

2 Planarity Bounds

A graph G is called a planar graph if G can be drawn in the plane so that no two of its edges
cross each other. If G is planar, then it divides the plane into pieces called regions. Recall that
for any planar, connected graph G, if G has V vertices, E edges, and F faces, Euler’s formula
tells us that

V − E + F = 2.

You can imagine how hard it is to prove a graph to be non-planar: you can’t possibly check
every way of drawing the graph. Euler’s Identity leads to some simple conditions on planarity.

1We studied Eulerian trails because such trails may need to have repeated vertices, unlike paths which necessarily
have unique vertices.

1



Discussion 2B Recap Tyler Zhu

We can derive many useful bounds using this formula that involve only two of the three
quantities, which is helpful especially for showing that certain graphs are nonplanar. Usually
we omit faces since those are tricky to quantify, so let’s try to compare the number of faces to
the number of edges.
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Figure 2: An example planar graph G1 with its three faces marked.

Let’s look at the graph G1 shown in Figure 2. Notice that every edge is a part of exactly two
faces. So we can count the number of edges also by looking at how many edges border each
face. Let |Fi| denote the number of edges that border the face Fi. Then,

2E = |F1|+ |F2|+ |F3|
= 4 + 3 + 5

≥ 3 + 3 + 3

= 3F

where we used the very deep fact that every face is bordered by at least 3 edges (how else do
you have a face?). Hence, we’ve arrived at the inequality 2E ≥ 3F . Now if we solve our formula
for F and substitute, we get the all important bound

2− V + E = F ≤ 2

3
E =⇒ E ≤ 3V − 6 .

This is useful now as a method for showing a graph is nonplanar, as otherwise we’d have
to draw every possible configuration of a graph and show all of them have crossings, which is
neither feasible nor convincing. We can use this to show that K5, the complete graph on 5
vertices, is nonplanar. Since it has 5 vertices and 10 edges, 10 6≤ 3 · 5− 6 = 9.

One extension of the above bound is to find a bound when G is triangle-free, i.e. no face
is bounded by 3 edges. I’ll leave that as an exercise for you. Recall that the graph with six
vertices, where three vertices are connected to all three other vertices, is the complete bipartite
graph K3,3. We can use this new bound to show K3,3 is nonplanar.

Exercise 2.1. Show that if G is a connected, planar, triangle-free graph, then E ≤ 2V − 4. Use
this to show that K3,3 is nonplanar.

As a hint, we proved that all bipartite graphs have no odd tours. So what do we know about
the presence of triangles in such a graph?

K3,3 K5

Figure 3: The Kuratowski graphs
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We can already see how much trouble it can be to determine planarity for arbitrary graphs,
let alone simple ones like K3,3 and K5. Surprisingly, the main enemies to planarity are precisely
these two graphs, which leads to a simple check to see if a graph is planar, discovered in 1930.
Before I can state Kuratowski’s remarkable theorem, I need to state two notions.

A subdivision of a graph is constructed by replacing one edge by two edges with a vertex
in between, and a subgraph is constructed by removing vertices or edges.

Theorem 3 (Kuratowski). A graph G is planar if and only if G does not contain a subdivision
of K5 or K3,3 as a subgraph.

In other words, G is planar if it is not possible to subdivide the edges of K5 or K3,3, and then
possibly add edges or vertices, to get G.

2.1 To Take Home

Exercise 2.2 (Dis. Problem 2b). Consider graphs with the property T : For every three distinct
vertices v1, v2, v3 of graph G , there are at least two edges among them. Prove that if G is a
graph on ≥ 7 vertices, and G has property T , then G is nonplanar.

Hint: Proof by contradiction when v = 7. What do we know about groups of five vertices in
a planar graph?

3 Induction on Edges and Vertices

Problem 3 from the discussion sometimes gives people trouble, so I’ll try to explain it some
more in depth. Here is the problem, paraphrased.

Problem 1. An edge coloring of a graph is an assignment of colors to edges in a graph where
any two edges incident to the same vertex have different colors.

(a) Prove that any graph with maximum degree d ≥ 1 can be edge colored with 2d−1 colors.

(b) Show that any tree with maximum degree d ≥ 1 can be edge colored with d colors.

The solution is to use induction on the number of edges in the first question, and induction
on the number of vertices in the second. I’m not going to re-explain the solution (you can find
it online) but I’ll try to explain why it’s fine to induct this way.

Imagine if I had the following problem:

Question. Prove that any graph with maximum degree 4 can be edge colored with 7 colors.

Now induction, especially on the number of edges, seems like a viable approach. We’re proving
some statement about all graphs, so let’s assume its true for a graph with m edges and prove
it for one with m + 1 edges (both with max degree 4). What about this problem:

Question. Prove that any graph with maximum degree 10 can be edge colored with 19 colors.

See what I’m getting at? Just because we have a variable d in our original statement doesn’t
mean we need to induct over d. We can treat d as a constant and show the statement is true
for all graphs given a specific d, which then shows the statement is true for all d.

Another analogy: we don’t need to induct over our variable d much like how the number of
vertices and edges are also variables, but we don’t need to induct over both.
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