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1 Definitions

We’ll need the following definitions for today’s discussion.

Definition 1 (Expectation). The expectation of a random variable X is

E[X] =
∑
x∈A

xP(X = x).

Definition 2 (Variance). The variance of a random variable X is

Var(X) =
∑
x∈A

(x− E[X])2P(X = x) = E[X2]− E[X]2.

Remember that expectation of a function of any random variable is an average of the values of
the r.v. with the function applied, weighted by the probabilities, as one would expect. Formally,

E[f(X)] =
∑
x∈A

f(x)P(X = x).

This is sometimes referred to as the law of the unconscious statistician.

2 Poisson Distributions

Poisson distributions model rare events, such as the number of cases of disease, number of births
per hour, or number of arrivals of a bus in an hour. They are defined in terms of a parameter
λ, referred to as the intensity or the rate, which specifies the average number of times an event
occurs in a continuous interval.

Definition 3 (Poisson Distribution). A r.v. X is a Poisson Distribution with parameter λ if it
has probability mass function

P(X = k) =
e−λλk

k!

for k = 0, 1, . . . (i.e. X is a nonnegative random variable). We write X ∼ Poisson(λ) to denote
this.

There are a number of implications here:

• Since this is a distribution,
∑∞

k=0
e−λλk

k! = 1.

• E[X] = Var(X) = λ, as one would expect since λ is the average number of occurrences.

• Occurences that occur in disjoint subintervals or subregions are independent.

• Occurences on some subintervalA of the entire interval I are distributed∼ Poisson(λ|A|/|I|).
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Finally, there is this neat property of Poisson random variables that we will use often (The-
orem 19.5 in the notes).

Theorem 4. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be independent Poisson random variables.
Then X + Y ∼ Poisson(λ+ µ).

Notice that this doesn’t hold for dependent Poisson r.v.’s, and it also doesn’t hold for inde-
pendent geometric r.v.’s.

It is also useful to have an alternate view of these distributions. Since Poisson distributions
measure the number of arrivals in a given interval, we could also think of them as a Binomial
distribution. To be precise, if X ∼ Poisson(λ), then on an interval of length n, we would expect
there to be about λ/n arrivals on average. If we take n to be big enough, then we can make the
assumption that there is at most one arrival in each chunk of length 1, so this is just distributed
as ∼ Bin(n, λ/n)!

In fact, as n → ∞, if X ∼ Bin(n, λ/n), then P(X = k) = e−λλk

k! , the PMF of a Poisson
distribution.

3 Computing Variance of a Sum of Indicators

Suppose I have a random variable X = X1 + · · ·+Xn where Xi are random indicator variables.
Then the expectation is just

E[X] =
n∑
i=1

E[Xi]

by the linearity of expectation. The variance however is not so easy, but is important to know
as it comes up time and time again. We begin by using the formula above to write it as
Var(X) = E[X2] − E[X]2, so we only need concern ourselves with the first term. Expanding
let’s us write it as

E[X2] = E
[
(X1 + · · ·+Xn)2

]
= E

 n∑
i=1

X2
i +

∑
i 6=j

XiXj


= E

[
n∑
i=1

Xi

]
+ E

∑
i 6=j

XiXj


= E[X] +

∑
i 6=j

E[XiXj ].

We got from the second line to the third line since Xi only takes on the values 0 or 1, so
X2
i = Xi for all values it takes on. Thus, we can reduce all computations of E[X2] to computing

E[XiXj ], which in term depends only on what P(Xi = 1 ∩Xj = 1) is.
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