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Abstract. In this paper, we discuss the notion of a moduli space and determine moduli spaces
of isomorphism classes of genus 0 and 1 curves with various numbers of marked points.

1. Moduli Spaces

1.1. Introduction. According to [2], moduli spaces can be thought of as geometric solutions
to geometric classification. In broad terms, a moduli problem consists of three problems:

(1) Objects: which geometric objects would we like to describe, or parametrize?
(2) Equivalences: when do we identify two of our objects as being isomorphic, or being “the

same”?
(3) Families: how do we allow our objects to vary, or modulate?

We will demonstrate these ideas with the following problem:

Problem 1.1: Describe the collections of lines that pass through the origin in R2.

From here on out, lines will be understood to pass through the origin in R2. We can easily
solve this classification problem by assigning each line L a parameter θ ∈ [0, π) that represents
its angle with the x-axis. Hence, this set of lines, the real projective line known as RP1, is in
one-to-one correspondence with the half open interval [0, π).

However, this geometric solution doesn’t capture the natural topology of the problem. It
doesn’t demonstrate how the line L with θ(L) = 0 is nearby lines with θ = 0.1, but also with
θ = π − 0.1. One way of fixing this is to instead consider the closed interval [0, π] and identify
0 and π to be the same point. Formally, we would be considering

[0, π]/ ∼ where 0 ∼ π.
Now, numbers close to 0 are also close to π, and vice versa. In other words, we glued together

the ends of a line segment to form a circle. See Figure 1
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Figure 1. An example of the correspondence [0, π]/ ∼

Perhaps a more natural way to arrive at the same construction is to consider the unit circle
S1 ⊂ R2. For each s ∈ S1, we can consider the line L(s) passing through the origin and s.
Now, we have a family of lines parametrized by S1, that is, a map s 7→ L(s) that takes points
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on S1 to lines in RP1. However, this map is two-to-one since s and −s map to the same line.
We fix this by identifying s and −s to be the same and letting the s with angles in [0, π) be
representatives, giving us a one-to-one correspondence between RP1 and something that is still
topologically equivalent to a circle. See Figure 2.
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Figure 2. An example of the correspondence s 7→ L(s)

Our task is similar to these solutions. We wish to find some space or variety that parametrizes
each object in a given family such that this space preserves any inherent topological notions.

1.2. Objective. The main objects of our study are smooth compact complex curves, also called
Riemann surfaces, with n marked numbered pairwise distinct points. Unless otherwise specified
they are assumed to be connected. Every compact complex curve has an underlying structure
of a 2- dimensional oriented smooth compact surface, that is uniquely characterized by its genus
g.

One of the main goals of this paper is to understand the moduli space of various families of
curves, which we define now.

Definition 1. The moduli space Mg is the set of isomorphism classes of curves of genus g.
In addition, for 2 − 2g − n < 0, the moduli space Mg,n is the set of isomorphism classes of

Riemann surfaces of genus g with n marked points, i.e. distinct ordered marked points on one
curve must map to the corresponding marked point on the other curve.

2. Rational Curves

We wish to study the moduli space of genus 0 curves, M0,n where n > 2. Curves of genus 0
are called rational curves, and they all turn out to be conics.

Let us first make some observations about rational curves. Since they are genus 0, when drawn
over C2 (which cannot be visualized since it has 4 real dimensions), the curve is homeomorphic
to a genus 0 surface, or a sphere, upon compactification. Such a sphere is also isomorphic to
the complex projective line1 CP1.

Now let us consider some basic properties of rational curves by studying M0,3. Our main
reference here is [3].

Example 2.1: We claim that every rational curve (C, x1, x2, x3) with three marked points is
isomorphic to (CP1, 0, 1,∞) in a unique way. Hence, M0,3 = a point.

1A line with one complex dimension, or a plane with two real dimensions.
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To study isomorphism classes of rational curves, we look to the automorphism group of CP1,
which is PSL(2,C) acting by (

a b
c d

)
z =

az + b

cz + d
.

Consider the group action (
x3 − x2 −x1(x3 − x2)
x1 − x2 −x3(x1 − x2)

)
which sends (C, x1, x2, x3) to (CP1, 0, 1,∞). If such an action exists, this will be unique (up to
scaling). One way to see this is to solve the system of equations

ax1 + b

cx1 + d
= 0 (1)

ax2 + b

cx2 + d
= 1 (2)

ax3 + b

cx3 + d
=∞ (3)

where equation (3) can be solved by considering when cx3 + d = 0. Setting c = 1 and clearing
denominators gives the action above and proves our claim.

Example 2.2: Now we will identifyM0,4. This proof is taken from [3]. Every curve (C, x1, x2, x3, x4)
is isomorphic to (CP1, 0, 1,∞, t) in a unique way. The number t 6= 0, 1,∞ is determined by the
positions of the marked points on C. It is called the modulus and gave rise to the term moduli
space. If C = CP1, then t is the cross-ratio of x1, x2, x3, x4. The moduli space M0,4 is the set
of values of t, that is M0,4 = CP1\{0, 1,∞}.

These two examples lead us to conjecture the following classification theorem for the moduli
space of genus 0 curves with n marked points for n > 0.

Theorem 2. The moduli spaceM0,n is given by

M0,n = {(t1, . . . , tn−3) ∈ (CP1)n−3 | ti 6= 0, 1,∞, ti 6= tj}.

The proof is similar, because the curve (C, x1, . . . , xn) can be uniquely identified with
(CP1, 0, 1,∞, t1, . . . , tn−3).

3. Elliptic Curves

The main reference used for this section is [1].
Elliptic curves are curves of genus one with a specified base point. This means that if we

formed a surface from the curve (over the complexes, which has thickness), we would have
a genus 1 surface, or a torus. It is particularly simple to classify all elliptic curves up to
isomorphism, and we do so algebraically by the Weierstrass Equation.

3.1. The Weierstrass Equations. Every elliptic curve can be expressed as a curve in P2 with
its one base point on the line at infinity. After scaling, we have that the equation is

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where O = [0 : 1 : 0] is the basepoint and ai ∈ K̄, an algebraically closed field. We call this
general form of the elliptic curve a Weierstrass Equation.

To simplify this equation, we want to let Z = 1. Before we can, we have to check that there
are no other solutions at infinity (i.e. making sure we don’t divide by 0), which is true since
[0 : 1 : 0] is a triple point. Thus, dehomogenizing the equation and rewriting it gives

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Now, if char K̄ 6= 2, 3, then through a series of substitutions, we can arrive at the simpler
equation

E : y2 = x3 +Ax+B
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called the short Weierstrass form. The assumptions about the characteristic of K̄ are necessary
to complete the square and divide by 3. See Figure 3 for some examples of elliptic curves.

Figure 3. Five elliptic curves with various A and B.

3.2. The j-invariant. Now with this Weierstrass equation, we can associate the quantities

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.

We call ∆ the discriminant and j the j-invariant of the elliptic curve, for reasons we will
see shortly. We note that if ∆ = 0, then we define j to be ∞. Elliptic curves with ∆ = 0
are precisely those with singularities like cusps or nodes. The only change of variables which
preserves this form of the equation is

x = u2x′ and y = u3y′ for some u ∈ K̄;

for which the new variables are

u4A′ = A, u6B′ = B, u12∆′ = ∆.

This gives a criterion for when elliptic curves are isomorphic, which we can use to demonstrate
the invariance of the so-called “j-invariant”.

Proposition 3. Two elliptic curves are isomorphic over C if and only if they both have the
same j-invariant.

Proof. If two elliptic curves are isomorphic, then the change of variables above shows us that

j′ = −1728
(4u4A′)3

u12∆′
= −1728

(4A′)3

∆′
,

so their j-invariants are the same.
For the converse, let E and E′ be elliptic curves with the same j-invariant, say with short

Weierstrass equations

E : y2 = x3 +Ax+B

E′ : y2 = x3 +A′x+B′.

Then the assumption that j(E) = j(E′) gives

(4A)3

(4A3 + 27B2)
=

(4A′)3

(4A′3 + 27B′2)
,

which yields
A3B′2 = A′3B2.

We look for an isomorphism of the form (x, y) = (u2x′, u3y′) and consider three cases:

(1) A = 0(j = 0). Then B 6= 0, since ∆ = 0, so A′ = 0. We obtain an isomorphism with

u = (B/B′)1/6.

(2) B = 0(j = 1728). Then A 6= 0, so B′ = 0. We pick u = (A/A′)1/4 for an isomorphism.
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(3) AB 6= 0(j 6= 0, 1728). Then A′B′ 6= 0, since if one were 0, both would be 0, contradicting

∆′ 6= 0. Taking u = (A/A′)1/4 = (B/B′)1/6 gives our desired isomorphism.

�

The final step of the puzzle is now to determine the values for which there is an associated
j-invariant; it turns out that the answer is all values in an algebraically closed field.

Proposition 4. Let j0 ∈ CP1 be an element of the extended complex plane. Then there exists
some elliptic curve E over C for which j(E) = j0.

Proof. If j0 = 1728, we can pick y2 = x3 + x, and if j0 = ∞, we can pick y2 = x3, so assume
j0 6= 1728,∞. Then we want A,B ∈ C such that

j0 = −1728
(4A)3

−16(4A3 + 27B2)
= 6912

A3

4A3 + 27B2
.

If we let B = 1, then we are solving

j0
6912

(4A3 + 27) = A3 =⇒ j0
1728

A3 +
j0

256
= A3 =⇒ j0 − 1728

1728
A3 +

j0
256

= 0,

and by the cubic formula there exists a value A that satisfies this equation, and hence there
exists an E for which j(E) = j0. �

With these two propositions, we can now see what the moduli space of elliptic curves should
look like.

Theorem 5. The moduli space of isomorphism classes of elliptic curves is CP1, the one-
dimensional complex projective plane. In other words,M1 = CP1.

Proof. We need show that the set of isomorphism classes of elliptic curves is in one-to-one
correspondence with CP1. But Proposition 3 tells us that these isomorphism classes correspond
precisely to distinct values of the j-invariant. It follows by Proposition 4 that the j-invariant
can take on all values in CP1, so the isomorphism classes are bijective with CP1 as desired. �
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