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Abstract. In this paper, we will discuss some variants of the converse to Lagrange’s The-
orem, namely that if m divides the order of a group G then G has a subgroup of order m,
and see many fascinatingly related results.

1. Overview

In 1771, Joseph-Louis Lagrange stated a theorem about symmetric groups of polynomials
in his Réflexions sur la résolution algébrique des équations, but did not prove it. In 1801,
Carl Friedrich Gauss proved Lagrange’s theorem for Z×

p , the multiplicative group modulo
p, and in 1844, Augustin-Louis Cauchy proved the theorem for the symmetric group Sn. It
was not until 1861 that Camille Jordan finally proved Lagrange’s theorem for permutation
groups, which by Cayley’s Theorem proves it for all groups. With the modern machinery of
cosets, the proof of the theorem is but a simple application of this concept.

Theorem 1 (Lagrange’s Theorem). Let G be a group, and H be a subgroup of G. Then, the
order of H divides the order of G, or |H|

∣∣ |G|.
Proof. By considering the cosets formed by H, one notes that these cosets partition G into
equal cosets of size |H|, from which the theorem follows. �

It is natural to ask if the converse of this theorem is true. We will cover topics in roughly
the following order:

(1) Subgroups and Generators, specifically the center of a group and the commutator
subgroup.

(2) Normal subgroups, Quotient Groups, and the Isomorphism Theorems.
(3) Ascending Central Series and Nilpotent Groups
(4) Derived series and Subnormal Series.

It is suggested that one proceeds in this order when reading this paper, as later sections will
rely heavily on material, or at least ideas, presented in earlier sections. One should at least
skim the sections that are review and then proceed to later sections.

2. Notation

We define much of the notation used in this paper here for your reference. Some of the
notation is not developed until later sections, so do not worry if you don’t understand them
right now.

Let G be a group. Then we denote H a subgroup of G by H 6 G. If H is also a normal
subgroup of G, then we write H /G, and denote the quotient group of G modded out by H
as G/H.
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3. Subgroups and Generators

4. Quotient Groups and the Isomorphism Theorems

This is a most important theorem, and will be used later on in developing ascending central
series.

Theorem 2 (Theorem I.5.11 in [1]). If f : G → H is an onto homomorphism of groups,
then the assignment K 7→ f(K) defines a one-to-one correspondence between the set Sf (G)
of all subgroups K of G which contain ker f and the set S(H) of all subgroups of H. Under
this correspondence normal subgroups correspond to normal subgroups.

Exercise 4.1 (Exercise I.5.16 in [1]): Prove that if f : G → H is a homomorphism, H is
abelian, and N is a subgroup of G containing ker f , then N is normal in G.

5. Nilpotent Groups

5.1. Ascending Central Series. In this section, we will finally be able to see what an
ascending central series is, as well as the definition of a nilpotent group.

Suppose we have a group G. Then the center of the group, Z(G) = {z ∈ G|gzg−1 = z∀g ∈
G}, is a normal subgroup of G. 1 Thus, if we let Z1 = Z(G), then

Z1 = Z(G) / G.

This means we can mod out by Z1 to obtain the quotient group G/Z1, which induces the
canonical projection ϕ1 : G → G/Z1 that sends g 7→ gZ1. However, since G/Z1 is a group,
its center, which we will denote W2 = Z(G/Z1), is also a normal subgroup (of G/Z1). Hence,
we have that W2 / G/Z1.

Now, since ϕ1 is an onto2 homomorphism, we can apply Theorem 2 to ϕ1. Since W2 is a
subgroup of G/Z1, it has some pre-image, or more formally a pullback, under the assignment
K 7→ ϕ1(K) where K ≤ G. Let us pullback W2 under ϕ1 to a subgroup Z2 6 G. Theorem 2
also tells us that kerϕ1 ⊆ Z2, and that Z2 / G. However, kerϕ1 is precisely just Z1! Hence,
we have that Z1 6 Z2 / G. Combining this with the fact that Z1 / G, we get that

Z1 / Z2 / G

because Z1 /G implies that that the elements of Z1 should be normal in any subgroup of G.
We can repeat this process again and again to get something that looks like this:

{e} / Z1 / Z2 / Z3 / · · · / G.

This is called the ascending central series of the group G. If Zn = G for some n, then
G is said to be nilpotent. How could this not happen? This does not happen when at some
point, the Zi end up being equal to each other, but not necessarily equal to G! There are
examples of this later on.

Nilpotent groups turn out to have a ton of nice properties. One example is a complete
converse to Lagrange’s theorem.

Lemma 3. If G is a finite nilpotent group and m divides |G|, then G has a subgroup of
order m.

1Straightforward to show, as we did in Section 2
2In other words, all of G maps into G/Z1, so that every z ∈ G/Z1 has a preimage.
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Proof. See [1] page 101. First prove that a finite group is nilpotent if and only if it is a direct
product of its Sylow subgroups. The lemma follows by breaking up m into its prime powers
and applying the First Sylow Theorem. �

5.2. Examples.

Example 5.1: Let us consider the group Z7 under addition. The center, Z1 = Z(Z7), is
the set of elements of Z7 that commute with everything in the group. Since Z7 is abelian
however, everything commutes with everything else. Hence, Z1 = Z(Z7) = Z7, and thus Z7

is nilpotent.

Example 5.2: The previous example actually hints that if G is any abelian group, then G
is nilpotent. This is true, for the center Z1 = Z(G) will be all of G because G is abelian,
and hence Z1 = G, which is precisely the definition of nilpotent. This also means that it is
only interesting to study nonabelian groups for nilpotence, so all of the following examples
will be of nonabelian groups.

Example 5.3: Let us consider the Discrete Heisenberg Group

G =


1 a b

0 1 c
0 0 1

 ∣∣ a, b, c ∈ Z

 ,

named after the German physicist Werner Heisenberg. There is a similar group called the
Continuous Heisenberg Group, where a, b, c ∈ R, which has applications in one-dimensional
quantum mechanical systems.

Example 5.4: Now we will present an example of a nonabelian group that is not nilpotent.
Consider the alternating group A5. Recall that A5 is simple, which means that it has no
proper normal subgroups. Hence, the only normal subgroups of A5 are {e} and A5 itself.
Now consider Z(A5) = Z1. The center of always abelian, so Z1 must be abelian and normal
in A5. However, A5 is nonabelian, so therefore Z1 = {e}. This means that the ascending
central series for A5 is

{e} / {e} / · · · / {e} / A5,

where {e} = Z1 = Z2 = · · · . Hence, A5 is not nilpotent.

Example 5.5: The only special property of A5 was that it was simple and nonabelian.
Therefore, one can argue similarly as we did for A5 that any group G that is simple and
nonabelian cannot be nilpotent. Groups with these properties of small order are quite rare
in fact. There are (up to isomorphism) only two nonabelian simple groups of order less than
200, namely A5 and a subgroup of S7 of order 168 (see [1] pg. 111).

6. Other Series

6.1. Derived Series. Derived Series are to the commutator subgroup as what ascending
central series are to the center of a group.

6.2. Subnormal Series. Subnormal Series are essentially a generalization of what we have
previously with the derived series and ascending central series.
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