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1 Teasers

Theorem 1 (The Party Theorem). At any party, there is a pair of people who have the
same number of friends present.

Problem 2 (Bridges of Konigsberg). Consider the map of Konigsberg colorized, circa
2017, presented below. Find a walk through the city that crosses each of the bridges once
and only once.

Figure 1: Bridges of Kongsberg Figure 2: Can you draw all nine lines?

Problem 3 (Three Utilities). Alice, Bob, and Carl live in a two-dimensional village and
need to be connected with each of the one sources of water, gas, and electricity. Is there
a way to make all nine connections without any of the lines overlapping?

Theorem 4 (Four Color Theorem). At most four colors are needed to color a map so
that every region is a different color from its neighbors.

A graph G consists of vertices or nodes, the points, and edges, the lines. We
frequently write V (G) and E(G) for the vertex and edge sets of G respectively, and call
|V (G)| and |E(G)| the order and size of the graph respectively.
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Figure 3: A graph of order 5 and size 6.

In Figure 3, V (G) = {u, v, w, x, y} and E(G) = {uv, ux, uw, vx, wx, xy}. If e = uv is
an edge of G, then u and v are said to be joined by the edge e. In this case, u and v are
referred to as neighbors of each other.
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2 Degree Sequences and the Havel-Hakimi Theorem

The degree of a vertex v, deg v, is the number of neighbors of v.

Theorem 5 (Party Theorem, rephrased). In a graph of order n, at least two vertices
have the same degree.

Theorem 6 (First Theorem of Graph Theory). If G is a graph of size m, then the sum
of the degrees of every vertex is equal to 2m.

If the degrees of the vertices of a graph G are listed in a sequence s, then s is called a
degree sequence of G. For example, all of the sequences

s : 3, 2, 2, 3, 1; s′ : 1, 2, 2, 3, 3; s′′ : 3, 3, 2, 2, 1

are degree sequences of the graph G in Figure 3. Finding degree sequences of a graph is
easy. The converse is interesting however. Given a sequence of nonnegative integers, is
it a degree sequence of some graph? Such a sequence is called graphical.

Problem 7. Which of the following sequences are graphical?

• s1 : 3, 3, 2, 2, 1, 1

• s2 : 6, 5, 5, 4, 3, 3, 3, 2, 2

• s3 : 7, 6, 4, 4, 3, 3, 3

The following theorem makes it easy to determine if a sequence is graphical.

Theorem 8 (Havel-Hakimi). A non-increasing sequence s : d1, d2, . . . , dn(n ≥ 2) of non-
negative integers, where d1 ≥ 1, is graphical if and only if the sequence

s1 : d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn

is graphical.

3 Eulerian and Hamiltonian Graphs

For a connected graph G, any open trail that contains every edge of G is an Eulerian
trail. If G contains a closed Eulerian trail, it is Eulerian

Theorem 9. A nontrivial connected graph G is Eulerian if and only if every vertex of G
has even degree.

With this, we can easily characterize graphs possessing an Eulerian trail.

Corollary 10. A connected graph G contains an Eulerian trail if and only if exactly two
vertices of G have odd degree. Furthermore, each Eulerian trail of G begins at one of
these odd vertices and ends at another.

Problem 11. Prove no such walk exists crossing each of the bridges of Konigsberg once.

There is an analog to Eulerian trails. A path in a graph G that contains every vertex
of G is called a Hamiltonian path.1 Unfortunately, these are much less well-behaved.
Here is a simple sufficient condition for a graph to be Hamiltonian, proven in 1952.

Theorem 12 (Dirac). A graph with n vertices (n ≥ 3) is Hamiltonian if every vertex
has degree ≥ n/2.
1We studied Eulerian trails because such trails may need to have repeated vertices, unlike paths which
necessarily have unique vertices.
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4 Planar Graphs and Kuratowski’s Theorem

A graph G is called a planar graph if G can be drawn in the plane so that no two of its
edges cross each other. If G is planar, then it divides the plane into pieces called regions.
We have the following famous result:

Theorem 13 (The Euler Identity). If G is a planar graph of order n, size m with r
regions, then n−m + r = 2.

You can imagine how hard it is to prove a graph to be non-planar: you can’t possibly
check every way of drawing the graph. Euler’s Identity leads to some simple conditions
on planarity.

Theorem 14. If G is a planar graph of order n ≥ 3 and size m, then m ≤ 3n− 6.

Problem 15. Show that the graph of order 5 with edges between every pair of vertices
(called the complete graph on 5 nodes, or K5) is nonplanar.

It turns out that setup in Problem 3 is indeed impossible, since the graph is nonplanar.
The graph with six vertices, where three vertices are connected to all three other vertices,
is the complete bipartite graph K3,3.

K3,3 K5

Figure 4: The Kuratowski graphs

Theorem 16 (Impossibility of the Three Utilities Problem). The graph K3,3 is nonplanar.

We can already see how much trouble it can be to determine planarity for arbitrary
graphs, let alone simple ones like K3,3 and K5. Surprisingly, the main enemies to planarity
are precisely these two graphs, which leads to a simple check to see if a graph is planar,
discovered in 1930. Before I can state Kuratowski’s remarkable theorem, I need to state
two notions.

A subdivision of a graph is constructed by replacing one edge by two edges with a
vertex in between, and a subgraph is constructed by removing vertices or edges.

Theorem 17 (Kuratowski). A graph G is planar if and only if G does not contain a
subdivision of K5 or K3,3 as a subgraph.

In other words, G is planar if it is not possible to subdivide the edges of K5 or K3,3,
and then possibly add edges or vertices, to get G.
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