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We proceed by giving an elementary approach to describing the inflection points
of planar cubic curves, and then discussing some of the properties relating to the
equations describing these points. We then show that the Galois group of these nine
inflections is isomorphic to a solvable group of order 216, known as the affine special
linear group ASL(2,Z/3Z).

1 The Structure of Flexes on Planar Cubics

To begin, we discover the structure of the inflection points with an elementary approach followed
by [3]. We will show that every nonsingular planar cubic has nine inflections. There turns out
to be a rich structure relating these points which is captured by the Hesse configuration. Then
we can also solve for the coordinates in a simple case, which provides concrete evidence of our
previous results.

1.1 Inflection Points and Hessians

We work in homogeneous coordinates. Let f(x1, x2, x3) be a homogeneous polynomial of the
third degree, such that f = 0 has no singular point.

Choose a triangle of reference having the vertex P = (0, 0, 1) on the cubic curve f = 0. Then
there is no term involving x33. In the terms rx1x

2
3 and sx2x

2
3, r and s are not both zero, since

otherwise P would be singular (look at the partial of x3).
We then make a series of transformations, first setting rx1 + sx2 as the new variable x1, and

then replacing x3 with a linear combination of x1, x2, x3. Our curve f becomes

f1 = x23x1 + ex3x
2
2 + C, (1)

where C is a cubic function of x1, x2, whose second derivative with respect to xi and xj shall
be designated by Cij . The Hessian of f1 is

h1 =

∣∣∣∣∣∣
C11 C12 2x3
C12 C22 + 2ex3 2ex2
2x3 2ex2 2x1

∣∣∣∣∣∣ = −8ex33 + . . . (2)

Thus P = (0, 0, 1) is on h1 = 0 if and only if e = 0.
Consider intersecting x1 = 0 with our curve f = 0. Let d be the coefficient of x32 in C. Then

the points of intersection are described by (ex3 + dx2)x
2
2 = 0. Two of these points are identical

with P , so that x1 = 0 is tangent to f1 = 0 at P . The three points coincide if and only if e = 0,
and P is then called an inflection point of f1 = 0 and x1 = 0 the inflection tangent at P . Hence
P is on h1 = 0 if and only if it is an inflection point of f1 = 0. As a result, we have

Theorem 1. Each intersection of a nonsingular cubic curve f = 0 with its Hessian curve
h = 0 is an inflection point of f = 0, and conversely.
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1.2 Counting the Inflection Points

We would like to count the number of inflection points on an arbitrary nonsingular cubic curve.
There is at least one intersection of f = 0, h = 0. This follows by eliminating x3, resulting in a
homogeneous equation in x1 and x2.

Take this point as the vertex (0, 0, 1) of a triangle of reference. As above, we get f1 = 0,
where now e = 0, d 6= 0. By scaling x2, we can have d = 1. We add a suitable multiple of x1 to
x2 to eliminate x22x1, and get

F = x23x1 + C, C = x32 + 3bx2x
2
1 + ax31. (3)

Its Hessian H is the determinant h1 from earlier but with e = 0. Thus

H = 2x1

∣∣∣∣C11 C12

C12 C22

∣∣∣∣− 4x23C22

= 72x1(bx
2
2 + ax1x2 − b2x21)− 24x23x2.

Eliminating x23 between F = 0, H = 0, we get

x42 + 6bx22x
2
1 + 4ax2x

3
1 − 3b2x41 = 0.

If x1 = 0, then x2 = 0 and we get the known inflection point (0, 0, 1). For the remaining
intersections, we may set x1 = 1. Then for each root of

r4 + 6bt2 + 4ar − 3b2 = 0, (4)

we get two inflection points (1, r,±s), where, by F = 0,

−s2 = r3 + 3br + a.

In fact, no root of (4) makes s = 0; in other words, (4) has no double root. For, by eliminating
r between the quartic and cubic equations, we get a2 + 4b3 = 0, and one can show that no
nonsingular curve will attain this condition. Hence, we have proved

Theorem 2. Any nonsingular plane cubic curve has exactly nine inflection points.

Remark. This result also follows from Bezout’s theorem. We intersect f1 = 0, a degree 3 curve,
with h1 = 0, a degree 3(3− 2) = 3 curve, which results in at most 9 intersections. However, it
remains to be shown that they have only smooth transverse intersections (see Thm 2.10 in [?]).
We also could have used the Plucker formula’s to arrive at a similar result.

1.3 Inflection Triangles

For a fixed root r of Equation 4, the three points P = (0, 0, 1), (1, r,±s) are collinear, being on
the line x2 = rx1. We may start with any one of the nine inflection points in place of P . Hence,
they lie by threes on 9 · 4/3 lines.

Theorem 3. The straight line joining any two flexes of a nonsingular cubic curve meets the
curve in a new flex. The nine flexes lie by threes on twelve straight lines, four of which
pass through any one of the nine points.a

aThis was one of our homework problems.

The six inflection points not on a particular one of these lines lie by threes upon two further
lines, and the three lines are said to form an inflection triangle. There are 12/3 such triangles.
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Theorem 4. The nine flexes lie by threes upon the sides of any one of the four inflection
triangles.

We can visualize these theorems through the Hesse configuration. In complex projective space
it can be realized as the set of inflection points of a cubic curve, but there is no such realization
in the Euclidean plane.

Figure 1: The Hesse configuration of inflection points on an elliptic curve.

1.4 Ternary Canonical Form

With some algebraic manipulations, we can arrive at the following canonical form for ternary
cubics.

Theorem 5. Suppose f = 0 is a nonsingular cubic curve. Then under some projective
transformation, the equation of the curve assumes the form

f = α(z31 + z32 + z33) + 6βz1z2z3.

Furthermore, this curve is singular if and only if α3 + 8β2 = 0.

Using the fact that a given cubic curve is nonsingular, our problem eventually reduces to
finding the inflection points of the Fermat curve x3 + y3 + z3 = 0. The Hessian is h = 216xyz,
so at least one of x, y, z must be zero.

Suppose z = 0. Then we solve for the coordinate [x : y : 0] for which x3 + y3 = 0. Working
in homogenous coordinates, we can write this is [x : 1 : 0] for which x3 + 1 = 0. Solving them
gives x = −1,−ω,−ω2 where ω3 = 1, ω 6= 1.

We get similar results for the other coordinates, leading us to the following nine inflection
points:

(0, 1,−1) (0, 1,−ω) (0, 1,−ω2)

(−1, 0, 1) (−ω, 0, 1) (−ω2, 0, 1)

(1,−1, 0) (1,−ω, 0) (1,−ω2, 0)

We can verify that our results from Section 3 still hold. The three points in the ith row of
the table lie on the line zi = 0. The three in the first, second, and third columns lie in the
respective lines

z1 + z2 + z3 = 0, ω2z1 + ωz2 + z3 = 0, ωz1 + ω2z2 + z3 = 0.

The three diagonals lie on a similar line. Given this, we also note that these nine points as a
group have the same structure as Z/3Z× Z/3Z; in fact, they are isomorphic.
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2 The Galois Group of Inflection Points

To assist us in this development, we will make use of monodromy groups, which will be iso-
morphic to the Galois groups under the settings that we care about. This allows us to take
advantage of the rich geometric structure behind monodromy groups to arrive at our result.
For this section, we follow the definitions in [6].

2.1 Galois and Monodromy Groups

Throughout the section, let X,Y be two irreducible algebraic varieties of the same dimension
over the complex number C, and π : Y → X a generically finite map of degree d. Let p ∈ X be
a generic point so that π−1(p) consists of d distinct points q1, . . . , qd. We also fix a numbering
of these points. We define two groups associated to this setup:
Monodromy Group. This is a similar concept to monodromy in covering maps. The big

idea is that we want to capture the behavior of our space as it runs around certain points (usually
singularities). Typically in covering maps, we’d look at singular points and their ramifications,
using monodromy groups of transformations to look at what happens as we go around these
points.

Let U ⊂ X be a sufficiently small Zariski open set so that π is an unbranched covering map
of degree d restricted to V = π−1(U). We may also assume p ∈ U . For any loop γ : [0, 1]→ U
based at p, and any lift qi of p, there exists a unique lift of γ, denoted by γ̃i : [0, 1] → V so
that γ̃i(0) = qi. The endpoint of γ̃i is well defined up to a homotopy of γ. Therefore, we have
an action of π1(U, p) on the set {q1, . . . , qd} so that the equivalence class of homotopic loops
[γ] ∈ π1(U, p) sends pi to the endpoint of the lifted arc γ̃i. With respect to the fixed numbering,
this gives a homomorphism

π1(U, p)→ Sd,

where Sd is the symmetric group of d elements, sometimes referred to as the monodromy rep-
resentation. The image of this homomorphism is called the monodromy group of the covering
map π : V → U .

It may seem like at first this group depends on the choice of the Zariski open subset U , but
our key result will show that it does not.
Galois Group. The construction is a little involved, so the interested reader is deferred to

Section 2.6 of [6]. The important result is that we can define the Galois group of π in terms of
a certain field extension L/K, which does not depend on any Zariski open set. Then we can
get the following result.

Theorem 6 (Prop. 2.3 in [6]). For π : Y → X as above, the monodromy group equals
the Galois group. In particular, the monodromy group does not depend on the choice of
Zariski open subset U .

2.2 Monodromy Group of the Hesse Configuration

First, we define the affine special linear group ASL(n, k) of degree n over a field k to be the
external semi-direct product of the vector space kn by the special linear group SL(n, k). In
other words,

ASL(n, k) = kn o SL(n, k).

One way of viewing this (as suggested by [5]) is as a subgroup of the general affine group
(AGL), which is the semidirect product of the vector space with the entire general linear group
instead.

Using this, we can make the following claim.
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Theorem 7. The monodromy group is ASL(2,Z/3Z).

Proof. See pg. 15 of [6]. The first step is to see that the monodromy group is a subgroup of the
affine general linear group AGL(2,Z/3Z), as this group governs the affine space structure of of
the set of flexes. The only step left then is to show that the stabilizer of each flex is SL(2,Z/3Z).
This can be done by using properties of the monodromy group.

Finally, we can also show that ASL(2,Z/3Z) is solvable. It turns out that the derivative from
ASL(2,Z/3Z) to SL(2,Z/3Z) is a homomorphism whose kernel is the group of translations.
SL(2,Z/3Z) acts on P1

Z/3Z, which contains four points. As a result, SL(2,Z/3Z) maps into S4,

the permutation group on 4 elements, with kernel ±I. Hence, SL(2,Z/3Z) is solvable. The
group of translations is abelian, and hence solvable. Therefore, ASL(2,Z/3Z) is solvable, as
desired.

In [1], they use a different approach to show that the Galois group is isomorphic directly to
the semi-direct product. They also remark that the Galois group is the subgroup of index 2 of
AGL(2,Z/3Z), from which it the order works out to be 432/2 = 216.

3 Future Directions

Some other directions that were considered but not pursued are now mentioned.
One direction is a continuation of our elementary methods (motivated by [3]) to eventually

show that the Galois group is solvable. This is summarized by the following theorem.

Theorem 8 (Theorem 16 in [3]). The flexes can be found by solving a quartic and two cubic
equations, and the solution involves three cube roots and four square roots. For a general
cubic curve, no one of these radicals can be avoided or expressed in terms of the others.

Another direction can be to follow [2], which looks at flex points from a computational
viewpoint. It provides an algorithm for computing real flex points of cubics, which in real
appications is what we care most about. Hilbert came up with an algorithm to compute real
and complex flexes, but this exhaustive search is unnecessary if all we want are the real ones.
As the paper states...

“To compute the real inflection points of f = 0, only two cubic polynomial equations need
to be solved in our algorithm and it is unnecessary to solve numerically the quartic equation
prescribed in Hilbert’s solution. In addition, the invariants of f = 0 are used to analyze the
singularity of a singular curve, since the number of the real inflection points of f = 0 depends
on its singularity type.”
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