
Counting

Irvington Math Club

March 27, 2019

There’s two problems that you should tackle during lecture; pick one (or both) to solve, and
we’ll go over one of them. The rest are for homework. Email me at tyler.zhu@berkeley.edu
if you want explanations to the other ones.

1 Stars and Bars (Teaser)

Problem 1

How many cubic polynomials f(x) with positive integer coefficients are there such that
f(1) = 9?

Solution. Let f(x) = ax3+bx2+cx+d. The only condition on f(x) is that f(1) = 9, which means
a + b + c + d = 9. Since a, b, c, d are positive integers, there are

(
8
3

)
= 56 such polynomials.

Problem 2 (HMMT 2017)

How many ways are there to insert +’s between the digits of 111111111111111 (fifteen 1’s)
so that the result will be a multiple of 30?

Solution. No matter how many +’s we insert, the result will always be a multiple of 3 since
there are fifteen 1’s. For it to be a multiple of 10, we need exactly 10 numbers, which means
we’re adding 9 +’s. There are 14 gaps, so our answer is

(
14
9

)
.

Exercise 1.1. How many solutions are there in positive integers to the equation w+x+y+z = 30
if no variable takes on a value greater than 16?

Exercise 1.2 (Hockeystick). Prove that

n∑
i=r

(
i

r

)
=

(
n + 1

r + 1

)
with a combinatorial argument. Hint: count the positive integer solutions to x1 + · · ·+ xr+1 ≤
n + 1 in two ways.

Exercise 1.3 (10A 2016). When (a + b + c + d + 1)N is expanded and like terms are combined,
the resulting expression contains exactly 1001 terms that include all four variables a, b, c, and
d, each to some positive power. What is N?
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2 Double Counting and 1-1 Correspondences

Problem 3 (Moscow 1963)

Let a1, a2, . . . , an be a sequence of arbitrary natural numbers. Define bk to be the number
of elements ai for which ai ≥ k. Prove that a1 + a2 + · · ·+ an = b1 + b2 + · · · .

Solution. The idea is to double count. Drawing a picture is the best way to see this: for each
ai, draw ai circles vertically. Then the LHS is counting the number of circles going vertically,
while the RHS is counting them horizontally.

Formally, one way to count is simply to sum the ai’s. Another way to count uses the fact
that they are natural numbers. All the bi start at 0. Then, for any given ai, b1 through bai
will have all their values increased by 1, increasing the total on the RHS by ai. Hence the total
contributions of all ai to the RHS is just a1 + · · ·+ an.

Problem 4 (HMMT 2006)

Compute
2∑

n60=0

n60∑
n59=0

· · ·
n3∑

n2=0

n2∑
n1=0

n1∑
n0=0

1.

Solution. Another way of phrasing the problem is to find the number of solutions to 0 ≤ n0 ≤
n1 ≤ n2 ≤ · · · ≤ n60 ≤ 2. This corresponds to the number of right-up walks on a 61 × 2 grid
from the bottom left to the top right, which we all know to be

(
63
2

)
.

Alternatively, notice that every solution is of the form (0, . . . , 0, 1, . . . , 1, 2, . . . , 2), so we only
need to specify the number of 0s, 1s, and 2s. This is equivalent to solving the equation x+y+z =
61 for nonnegative x, y, z, which (by stars and bars) has

(
63
2

)
solutions.

Exercise 2.1 (HMMT 2006). How many ordered triples (a, b, c) of positive integers less than 10
have abc divisible by 20?

Exercise 2.2 (10A #25 2019). For how many integers n between 1 and 50 inclusive is

(n2 − 1)!

(n!)n

an integer? Hint: Show that (n2)!
(n!)n+1 is always an integer by counting.

Exercise 2.3. How many ways can we color each square of a 2007 × 2007 square grid either
black or white such that each row and each column has an even number of black squares?

3 Recurrences

This is the only section I’ll write stuff for since some of you may be new to it.
The idea is that we’ll have a quantity we care about (say length 10 strings with no repeated

letters) that can actually be built up from smaller instances of the same thing (length 8 and 9
strings with no repeated letters). So we can create a formula and then just plug and chug away.

They’re called recurrences because these formulas often depend on themselves. Fibonacci is
a good example of this: Fn = Fn−1 + Fn−2, where F0 = 1, F1 = 1. In fact Fibonacci numbers
show up very often in these problems.

Example 3.1

How many bit strings of length 10 have at least 3 consecutive 1’s?
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Solution. We’ll count complements instead, looking at how many bit strings of length 10 have
no more than two consecutive 1’s.

Let b(n) = # of bit strings of length n with no more than two consecutive 1’s. If we try to
construct a recurrence for this, we see that either we add a 0 at the end of any n − 1 length
string, a 01 at the end of a n − 2 length string, or a 011 at the end of a n − 3 length string.
Hence, this means that b(n) = b(n− 1) + b(n− 2) + b(n− 3). We know that b(1) = 2, b(2) = 4,
and b(3) = 7, so working our way to b(10) gives us 504. Subtracting from 210 = 1024 gives
520.

Another toy example to practice on: show that the number of bit strings of length n with no
consecutive 1’s is Fn+1.

In the following problems, you may need to make multiple recurrences that depend on each
other. Good luck!

Problem 5 (AIME II 2015)

There are 210 possible 10-letter strings in which each letter is either an A or a B. How
many such strings do not have more than 3 adjacent identical letters?

Solution. Let an be the number of n-letter strings starting with A subject to the above con-
straints, and bn be the same but with strings starting with B. Then to get a length n string
starting with A, we can add A to a n − 1 length string starting with B, add AA to a n − 2
length string starting with B, or add AAA to a n − 3 length string starting with B. So
an = bn−1 + bn−2 + bn−3.

In the same way, we find bn = an−1 + an−2 + an−3. Now since we’re interested in the
total number of strings, we’re really looking for an + bn. So let sn = an + bn. We get sn =
sn−1 + sn−2 + sn−3, where s1 = 2, s2 = 4, s3 = 8. Working our way up gives us s10 = 548.

Problem 6 (HMMT Guts 2011)

In how many ways can each square of a 4 × 2011 grid be colored red, blue, or yellow such
that no two squares that are diagonally adjacent are the same color?

Official Solution. If we first color the board in a checkerboard pattern, it is clear that the white
squares are independent of the black squares in diagonal coloring, so we calculate the number
of ways to color the white squares of a 4× n board and then square it.

Let an be the number of ways to color the white squares of a 4×n board in this manner such
that the two squares in the last column are the same color, and bn the number of ways to color
it such that they are different. We want to find their sum xn. We have a1 = 3, b1 = 6.

Given any filled 4× n− 1 grid with the two white squares in the last column different, there
is only 1 choice for the middle square in the nth row, and two choices for the outside square,
1 choice makes them the same color, 1 makes them different. If the two white squares are the
same, there are 2 choices for the middle square and the outer square, so 4 choices. Of these,
in 2 choices, the two new squares are the same color, and in the other 2, the two squares are
different. It follows that an = 2an−1 + bn−1 and bn = 2an−1 + bn−1, so an = bn for n ≥ 2. We
have xn = 8 · 3n−1 and x2011 = 8 · 32010. So the answer is 64 · 34020.

Exercise 3.2 (10B #25 2019). How many sequences of 0s and 1s of length 19 are there that
begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive
1s?

Exercise 3.3 (HMMT 2014). We have a calculator with two buttons that displays an integer
x. Pressing the first button replaces x by

⌊
x
2

⌋
, and pressing the second button replaces x by

4x + 1. Initially, the calculator displays 0. How many integers less than or equal to 2014 can
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be achieved through a sequence of arbitrary button presses? (It is permitted for the number
displayed to exceed 2014 during the sequence. Here, byc denotes the greatest integer less than
or equal to the real number y.)

Exercise 3.4 (NIMO). Let S = {1, 2, · · · , 2013}. Let N denote the number of 9-tuples of sets
(S1, S2, . . . , S9) such that S2n−1, S2n+1 ⊆ S2n ⊆ S for n = 1, 2, 3, 4. Find the remainder when
N is divided by 1000.

4 Be Smart

Problem 7 (12A #18 2010)

A 16-step path is to go from (−4,−4) to (4, 4) with each step increasing either the x-
coordinate or the y-coordinate by 1. How many such paths stay outside or on the boundary
of the square −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 at each step?

Solution. By symmetry, we will assume the path goes right, then up, and multiply by two
because we can reflect the path along the line y = x.

There are three ”safe” points that a path must go through to be considered valid: (2,−2),
(3,−3), and (4,−4). Note that a path can only go through one of the aforementioned points,

but must go through one such point. The number of ways to go through these points is
(
8
2

)2
+(

8
1

)2
+
(
8
0

)2
= 784 + 64 + 1 = 849. Plus symmetry, the answer is 849× 2 = 1698.

Problem 8 (CHMMC 2010)

Cindy draws randomly from a box with 2010 red balls and 1957 blue balls, one ball at a
time without replacement. She wins if, at anytime, the total number of blue balls drawn is
more than the total number of red balls drawn. Assuming Cindy keeps drawing balls until
she either wins or runs out, compute the probability that she eventually wins.

Solution. Suppose we draw all of the balls. Label the red balls R1, R2, . . . , R2010 and the blue
balls B1, B2, . . . , B1957 (left to right). Note that if B1957 is located to the right of R1957 then the
arrangement is not winnable. So, B1957 must be located to the left of R1957. It is clear that this
arrangement is winnable regardless of how the other balls are arranged because 1957 > 1956.
Since there are 2011 slots this occurs with probability 1957

2011 .

Exercise 4.1 (AIME 2006). Let (a1, a2, . . . , a12) be a permutation of (1, 2, . . . , 12) for which

a1 > a2 > a3 > a4 > a5 > a6 and a6 < a7 < a8 < a9 < a10 < a11 < a12.

An example of such a permutation is (6, 5, 4, 3, 2, 1, 7, 8, 9, 10, 11, 12). Find the number of such
permutations.

Exercise 4.2. Let N denote the number of 7-tuples of sets S1, S2, . . . , S7, not necessarily distinct,
for which

S1 ⊆ S2 ⊆ · · · ⊆ S7 ⊆ {1, 2, 3, 4, 5, 6, 7}.

Find the remainder when N is divided by 1000.

Exercise 4.3 (AIME 1990). In a shooting match a marksman must break eight targets arranged
in three hanging columns of 3, 3 and 2 targets respectively. Whenever a target is broken, it
must be the lowest unbroken target in its column. In how many different orders can the eight
targets be broken?
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