953 (9A: Tal B‘”""‘{

@f»(c,l‘e: 9 em{ﬂa\,wu;ﬂ[ J[a {iYJ ouf ﬂv ' dﬁ&\( SdeNY

Vlﬂwf e /’} ﬂ(’v o, yﬂw Cott
deenplsh fis) b M

V
C Pebyley 'S
— ! \ﬁ)/ -0 k)
/Lf " oV’

V- d/vw -sdrf
Markov % \%adl A ( ms

|t X he o "Mﬂfa v, wl fw% Yo, 7}7% (4/ cm, q) ﬁ

Plxse) ¢ 28

q

Cﬁébx{ehwk imi/qaljw ( Qx/vww/(/{[ )
Led Koc acy, wl W wm’ivﬂfdw m&m{ kw
PUIX- EFK( SE) < V"”(f)
L k
0. H)(/K: \(0 : \T;H
Asyurdcts dets




CS 70 Discrete Mathematics and Proba]oﬂity Theory
Fall 2020 DIS 12A
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(a) X is a random variable such that X > —5 and E[X| = —3. Find an upper bound for the proba-
bility of X being greater than or equal to —1.
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(b) Y is a random variable such that Y < 10 and E[Y] = 1. Find an upper bO%nd for the probability

of Y being less than or equal to —1.
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(¢c) You roll a die 100 times. Let Z be the sum of the numbers that appear on the die throughout

the 100 rolls. Compute Var(Z). Then use Chebyshev’s inequality to bound the probability of
the sum Z being greater than 400 or less than 300. @Z E?
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3 Working with the Law of Large Numbers

(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads.
Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads.
Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60%
heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which
number of tosses would you prefer: 10 tosses or 100 tosses? Explain.



2 Vegas

On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads
on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads
on both sides. You want to estimate p with the following experiment: you pick a random sample of
n people and ask each one to flip his or her coin. Assume that each person is independently likely
to carry a fair or a trick coin.

1. Given the results of your experiment, how should you estimate p?
(Hint: Construct an (unbiased) estimator for p such that E[p] = p.)

P—

2. How many people do you need to ask to be 95% sure that your answer is off by at most 0.05?
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