Dis 12A: Tail Bounds

Riddle: 5 employees want to find out the sam of their salaries without ever giving analy their own. How can they accomplish this?" crolyslev's (P/IX-UI>K) one-sided L-ap Markov's Inequality Let X be a nonneg. r.v. ul finite mean. Then for any a) 0, $\mathbb{P}(X \ge \alpha) \le \frac{\mathbb{F}[x]}{\alpha}.$ Chebyshev's Inequality (Symmetric) Let xbe ar.v. ul finite man & vorionde. Then for any kind $\mathbb{P}(|X-\text{EEXJ}|S,k) \leq \frac{V_{00}(X)}{k^2}.$ e.x. $P(X = x) = \frac{1}{5\pi} e$ Asympticis deste

CS 70
Fall 2020
Discrete Mathematics and Probability Theory
DIS 12A
1 Inequality Practice
(a) X is a random variable such that
$$X > 3$$
 and $\mathbb{E}[X] = -3$. Find an upper bound for the probability
(b) X being greater than or equal to -1.
 $X > -5 = -5$
 $Set = -5$

27400 or 22300.	=> Z-350 > 50.
P[[2- [F[z]] 2k]) =	P(12-F[2]17,51)
	$V_{a6}(Z) = 100.[35/12] \approx \frac{7}{2}$
	51 512 [0]

E[Z']: 375,

3 Working with the Law of Large Numbers

- (a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
- (b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
- (c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
- (d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

2 Vegas

On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads on both sides. You want to estimate p with the following experiment: you pick a random sample of n people and ask each one to flip his or her coin. Assume that each person is independently likely to carry a fair or a trick coin.

- 1. Given the results of your experiment, how should you estimate p? (*Hint:* Construct an (unbiased) estimator for p such that $E[\hat{p}] = p$.)
- 2. How many people do you need to ask to be 95% sure that your answer is off by at most 0.05?

