Dis 4A: CRT, FLT,

· Join our disrord; link in an email I sent! Me: Why is there exist integer a such that $a = 5 \pmod{17}$ and $a = 8 \pmod{21}$

My teacher:

History [edit]

The earliest known statement of the theorem, as a problem with specific numbers, appears in the 3rd-century book *Sun-tzu Suan-ching* by the Chinese mathematician Sun-tzu:^[1]

There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?^[2]

Sun-tzu's work contains neither a proof nor a full algorithm.^[3] What amounts to an algorithm for solving this problem was described by Aryabhata (6th century).^[4] Special cases of the Chinese remainder theorem were also known to Brahmagupta (7th century), and appear in Fibonacci's Liber Abaci (1202).^[5] The result was later generalized with a complete solution called *Ta-yan-shu* (大衍術) in Ch'in Chiu-shao's 1247 *Mathematical Treatise in Nine Sections* (數書 九章, *Shu-shu Chiu-chang*)^[6] which was translated into English in early 19th century by British missionary Alexander Wylie.^[7]

Review (Bijections)

- f is **onto** (surjective) if $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$
 - i.e. every $b \in B$ has a pre-image.
- f is **one-to-one** (injective) if $\forall a, a' \in A, f(a) = f(a') \implies a = a'$.
 - i.e. different inputs map to different outputs,

one-to-one & orto = bijective.

f: A-5B

Here's a helpful graphic illustrating the differences between all of these functions.

Figure 1: Examples of the four types of functions, and a non-function. Source: Math is Fun.

2-3 } 2-5 }

Theorem 5 (Chinese Remainder Theorem). Let m_1, \ldots, m_k be pairwise^a relatively prime positive integers, and let

$$M=m_1\ldots m_k.$$

Then for every k-tuple (x_1, \ldots, x_k) of integers, there is exactly one residue class $x \pmod{M}$ such that

$$x \equiv x_1 \pmod{m_1}$$

$$x \equiv x_2 \pmod{m_2}$$

:

$$x \equiv x_k \pmod{m_k}$$
.

 a Every pair of integers is relatively prime, as opposed to being relatively prime as a whole.

CRT is both constanctive & can show existence, (HW4#3) (HW4#4)

the big idea is that every number mod M can be broken down into its "tromponents" mod M, m2,...,m,c. ala basis vectors key prop: coprine moduli

example: (mod 15) (mod 3 & mod 5.

3		mod 5					
(0		2	3	4	\supset
	0	0	6	12	3	9	
mod 3	F	10	0	7	13	4	
	2	5	11	2	8	14	

ex:
x = 1 (mod 3)
x = 2 (mod 5).

in general,

$$x = \sum_{i=1}^{k} C_i \left(\frac{M}{m_i} \right) \equiv \sum_{i=1}^{k} \left(\frac{M}{m_i} \right)_{m_i}^{-1} \left(\frac{M}{m_i} \right) x_i \pmod{M}.$$

1 Chinese Remainder Theorem Practice

In this question, you will solve for a natural number x such that,

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{7}$$
(1)

(a) Suppose you find 3 natural numbers a,b,c that satisfy the following properties:

$$a \equiv 2 \pmod{3}$$
; $a \equiv 0 \pmod{5}$; $a \equiv 0 \pmod{7}$, (2)
 $b \equiv 0 \pmod{3}$; $b \equiv 3 \pmod{5}$; $b \equiv 0 \pmod{7}$, (3)

$$c \equiv 0 \pmod{3}$$
; $c \equiv 0 \pmod{5}$; $c \equiv 4 \pmod{7}$.

Show how you can use the knowledge of a, b and c to compute an x that satisfies (1).

$$X = a + b + c$$
.
 $X = 2 + 0 + 0 = 2 \pmod{3}$.
 $X = 0 + 3 + 0 = 3 \pmod{6}$

- (b) Find a natural number a that satisfies (2). In particular, an a such that $a \equiv 2 \pmod{3}$ and is a multiple of 5 and 7. It may help to approach the following problem first:
 - (b.i) Find a^* , the multiplicative inverse of 5×7 modulo 3. What do you see when you compute $(5 \times 7) \times a^*$ modulo 3, 5 and 7? What can you then say about $(5 \times 7) \times (2 \times a^*)$?

$$a = 0 \pmod{35}$$
 $(ac) + 35$
 $35 = 2 \pmod{3}$

$$a^* = (5 \times 7)^{-1} \pmod{3}$$
 $a^* = 2$.
140 = 35

(c) Find a natural number b that satisfies (3). In other words: $b \equiv 3 \pmod{5}$ and is a multiple of 3 and 7.

$$6^{\circ} = (3 \times 7)^{-1} \pmod{6}$$

 $= 21^{-1} = 1^{-1} = 1$
 $b = 6^{\circ} \times 3 \times 3 \times 7 = 63$

(d) Find a natural number c that satisfies (4). That is, c is a multiple of 3 and 5 and $\equiv 4 \pmod{7}$.

$$1^{4} = (3 \times 5)^{-1}$$
 (mod 7)
= 1^{-1} (mod 7)
 $1 = 1^{4} \times 4 + 3 \times 5 = 60$.

(e) Putting together your answers for Part (a), (b), (c) and (d), report an x that indeed satisfies (1).

CRT Decomposition

In this problem we will find $3^{302} \mod 385$.

- (a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.
- (b) Use Fermat's Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.
- (c) Let $x = 3^{302}$. Use part (b) to express the problem as a system of congruences (modular equations $\mod 385$). Solve the system using the Chinese Remainder Theorem. What is 3^{302}

16)
$$3^{302} = (3^4)^k \cdot \frac{3^2}{3^2} = 3^3$$

302=2 (mod 4))

$$(302 = 2 \pmod{6})$$

 $302 = 3^2 = 9 \pmod{6}$

(a) -1

$$(1) \qquad \qquad \chi \equiv 4 \pmod{5}$$

$$\int 3^{302} = 9 \pmod{3}$$

Format's Little Theorem

For prime P,

it yed (9,p)=1,

$$3^{2} = \frac{3^{4}}{3^{4}} = 3^{2}$$
 $302 = 4.75 + 2$

$$[x = 9 \pmod{385}]$$