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I Cube Dual U~ coloc Theorem

We define a graph G by letting the vertices be the corners of a cube-and having edges connecting
adjacent corners. Define the dual of a planar graph G to be a graph G, constructed by replacing
each face in G with a vertex; and an edge between every vertex in G’ if the respective faces are
adjacent in G.

(a) Draw a planar representation of G and the corresponding dual graph. Is the dual graph planar?
(Hint: think about the act of drawing the dual)

(b) Is G’ bipartite? . )
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3 Edge Colorings

An edge coloring of a graph is an assignment of colors to edges in a graph where any two edges -~ # 0{ QJ S (/ﬂ_fz‘ H) do" J %P')
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incident to the same vertex have different colors. An example is shown on the left.
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(a) Show that the 4 vertex complete graph above can be 3 edge colored. (Use the numbers 1,2,3

for colors. A figure is shown on the right.) L s : G" M/’ t":, M?C S, Ma/' &/CCI OQ

(b) Prove that any graph with maximum degree d > 1 can be edge colored with 2d — 1 colors. 2 (—\ ? /’AV f -
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(c) Show that a tree can be edge colored with d colors where d is the maximum degree of any
vertex.
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(c) Show that a tree can be edge colored with d colors where d is the maximum degree of any
vertex.

2 True or False

(a) Any pair of vertices in a tree are connected by exactly one path.
(b) Adding an edge between two vertices of a tree creates a new cycle.

(c) Adding an edge in a connected graph creates exactly one new cycle.



